All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.integration.GaussianQuadratureIntegrator1D Maven / Gradle / Ivy

There is a newer version: 2.12.46
Show newest version
/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.integration;

import java.util.Objects;
import java.util.function.Function;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.impl.function.special.OrthogonalPolynomialFunctionGenerator;

/**
 * Class that performs integration using Gaussian quadrature.
 * 

* If a function $f(x)$ can be written as $f(x) = W(x)g(x)$, where $g(x)$ is * approximately polynomial, then for suitably chosen weights $w_i$ and points * $x_i$, the integral can be approximated as: * $$ * \begin{align*} * \int_{-1}^1 f(x)dx * &=\int_{-1}^1 W(x)g(x)dx\\ * &\approx \sum_{\i=1}^{n} w_i f(x_i) * \end{align*} * $$ * The evaluation points, weights and valid limits of integration depend on the type of orthogonal * polynomials that are used * (see {@link OrthogonalPolynomialFunctionGenerator} and {@link GaussLaguerreWeightAndAbscissaFunction}). * */ public abstract class GaussianQuadratureIntegrator1D extends Integrator1D { private final int size; private final QuadratureWeightAndAbscissaFunction generator; private final GaussianQuadratureData quadrature; /** * Creates an instance. * * @param n The number of sample points to be used in the integration, not negative or zero * @param generator The generator of weights and abscissas */ public GaussianQuadratureIntegrator1D(int n, QuadratureWeightAndAbscissaFunction generator) { ArgChecker.isTrue(n > 0, "number of intervals must be > 0"); ArgChecker.notNull(generator, "generating function"); this.size = n; this.generator = generator; this.quadrature = generator.generate(size); } /** * {@inheritDoc} */ @Override public Double integrate(Function function, Double lower, Double upper) { ArgChecker.notNull(function, "function"); ArgChecker.notNull(lower, "lower"); ArgChecker.notNull(upper, "upper"); Function integral = getIntegralFunction(function, lower, upper); return integrateFromPolyFunc(integral); } /** * If a function $g(x)$ can be written as $W(x)f(x)$, where the weight function $W(x)$ corresponds * to one of the Gaussian quadrature forms, then we may approximate the integral of $g(x)$ over * a specific range as $\int^b_a g(x) dx =\int^b_a W(x)f(x) dx \approx \sum_{i=0}^{N-1} w_i f(x_i)$, * were the abscissas $x_i$ and the weights $w_i$ have been precomputed. This is accurate * if $f(x)$ can be approximated by a polynomial. * * @param polyFunction The function $f(x)$ rather than the full function $g(x) = W(x)f(x)$ * This should be well approximated by a polynomial. * @return The integral */ public double integrateFromPolyFunc(Function polyFunction) { ArgChecker.notNull(polyFunction, "polyFunction"); double[] abscissas = quadrature.getAbscissas(); int n = abscissas.length; double[] weights = quadrature.getWeights(); double sum = 0; for (int i = 0; i < n; i++) { sum += polyFunction.apply(abscissas[i]) * weights[i]; } return sum; } /** * Gets the limits. * * @return The lower and upper limits for which the quadrature is valid */ public abstract Double[] getLimits(); /** * Returns a function that is valid for both the type of quadrature and the limits of integration. * @param function The function to be integrated, not null * @param lower The lower integration limit, not null * @param upper The upper integration limit, not null * @return A function in the appropriate form for integration */ public abstract Function getIntegralFunction( Function function, Double lower, Double upper); @Override public int hashCode() { int prime = 31; int result = 1; result = prime * result + generator.hashCode(); result = prime * result + size; return result; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } GaussianQuadratureIntegrator1D other = (GaussianQuadratureIntegrator1D) obj; if (this.size != other.size) { return false; } return Objects.equals(this.generator, other.generator); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy