com.opengamma.strata.math.impl.interpolation.LogCubicSplineNaturalSolver Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of strata-math Show documentation
Show all versions of strata-math Show documentation
Mathematic support for Strata
/*
* Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.interpolation;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.math.impl.linearalgebra.TridiagonalMatrix;
import com.opengamma.strata.math.impl.linearalgebra.TridiagonalSolver;
/**
* For specific cubic spline interpolations, polynomial coefficients are determined by the tridiagonal algorithm.
*/
public class LogCubicSplineNaturalSolver extends CubicSplineSolver {
@Override
public DoubleMatrix solve(double[] xValues, double[] yValues) {
double[] intervals = getDiffs(xValues);
return getCommonSplineCoeffs(
xValues, yValues, intervals, matrixEqnSolver(getMatrix(intervals), getCommonVectorElements(yValues, intervals)));
}
@Override
public DoubleMatrix[] solveWithSensitivity(double[] xValues, double[] yValues) {
double[] intervals = getDiffs(xValues);
double[][] toBeInv = getMatrix(intervals);
double[] commonVector = getCommonVectorElements(yValues, intervals);
double[][] commonVecSensitivity = getCommonVectorSensitivity(intervals);
return getCommonCoefficientWithSensitivity(xValues, yValues, intervals, toBeInv, commonVector, commonVecSensitivity);
}
@Override
public DoubleMatrix[] solveMultiDim(double[] xValues, DoubleMatrix yValuesMatrix) {
int dim = yValuesMatrix.rowCount();
DoubleMatrix[] coefMatrix = new DoubleMatrix[dim];
for (int i = 0; i < dim; ++i) {
coefMatrix[i] = solve(xValues, yValuesMatrix.row(i).toArray());
}
return coefMatrix;
}
/**
* Cubic spline is obtained by solving a linear problem Ax=b where A is a square matrix and x,b are vector
* @param intervals {xValues[1]-xValues[0], xValues[2]-xValues[1],...}
* @return Matrix A
*/
private double[][] getMatrix(double[] intervals) {
int nData = intervals.length + 1;
double[][] res = new double[nData][nData];
res = getCommonMatrixElements(intervals);
res[0][0] = 1.;
res[nData - 1][nData - 1] = 1.;
return res;
}
@Override
protected double[] matrixEqnSolver(double[][] doubMat, double[] doubVec) {
int sizeM1 = doubMat.length - 1;
double[] a = new double[sizeM1];
double[] b = new double[sizeM1 + 1];
double[] c = new double[sizeM1];
for (int i = 0; i < sizeM1; ++i) {
a[i] = doubMat[i][i + 1];
b[i] = doubMat[i][i];
c[i] = doubMat[i + 1][i];
}
b[sizeM1] = doubMat[sizeM1][sizeM1];
TridiagonalMatrix m = new TridiagonalMatrix(b, a, c);
return TridiagonalSolver.solvTriDag(m, doubVec);
}
@Override
protected DoubleArray[] combinedMatrixEqnSolver(double[][] doubMat1, double[] doubVec, double[][] doubMat2) {
int size = doubVec.length;
DoubleArray[] res = new DoubleArray[size + 1];
DoubleMatrix doubMat2Matrix = DoubleMatrix.copyOf(doubMat2);
double[] u = new double[size - 1];
double[] d = new double[size];
double[] l = new double[size - 1];
for (int i = 0; i < size - 1; ++i) {
u[i] = doubMat1[i][i + 1];
d[i] = doubMat1[i][i];
l[i] = doubMat1[i + 1][i];
}
d[size - 1] = doubMat1[size - 1][size - 1];
TridiagonalMatrix m = new TridiagonalMatrix(d, u, l);
res[0] = DoubleArray.copyOf(TridiagonalSolver.solvTriDag(m, doubVec));
for (int i = 0; i < size; ++i) {
DoubleArray doubMat2Colum = doubMat2Matrix.column(i);
res[i + 1] = TridiagonalSolver.solvTriDag(m, doubMat2Colum);
}
return res;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy