com.opengamma.strata.math.impl.interpolation.SemiLocalCubicSplineInterpolator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of strata-math Show documentation
Show all versions of strata-math Show documentation
Mathematic support for Strata
/*
* Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.interpolation;
import java.util.Arrays;
import java.util.stream.IntStream;
import com.google.common.primitives.Doubles;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.DoubleArrayMath;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
/**
* Cubic spline interpolation based on
* H. Akima, "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures,"
* Journal of the Association for Computing Machinery, Vol 17, no 4, October 1970, 589-602
*/
public class SemiLocalCubicSplineInterpolator extends PiecewisePolynomialInterpolator {
private static final double ERROR = 1.e-13;
private static final double EPS = 1.e-7;
private static final double SMALL = 1.e-14;
private final HermiteCoefficientsProvider _solver = new HermiteCoefficientsProvider();
@Override
public PiecewisePolynomialResult interpolate(double[] xValues, double[] yValues) {
ArgChecker.notNull(xValues, "xValues");
ArgChecker.notNull(yValues, "yValues");
ArgChecker.isTrue(xValues.length == yValues.length, "(xValues length = yValues length) should be true");
ArgChecker.isTrue(xValues.length > 2, "Data points should be >= 3");
int nDataPts = xValues.length;
for (int i = 0; i < nDataPts; ++i) {
ArgChecker.isFalse(Double.isNaN(xValues[i]), "xValues containing NaN");
ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xValues containing Infinity");
ArgChecker.isFalse(Double.isNaN(yValues[i]), "yValues containing NaN");
ArgChecker.isFalse(Double.isInfinite(yValues[i]), "yValues containing Infinity");
}
double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts);
double[] yValuesSrt = Arrays.copyOf(yValues, nDataPts);
DoubleArrayMath.sortPairs(xValuesSrt, yValuesSrt);
ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues");
double[] intervals = _solver.intervalsCalculator(xValuesSrt);
double[] slopes = _solver.slopesCalculator(yValuesSrt, intervals);
double[] first = firstDerivativeCalculator(slopes);
double[][] coefs = _solver.solve(yValuesSrt, intervals, slopes, first);
for (int i = 0; i < nDataPts - 1; ++i) {
double ref = 0.;
for (int j = 0; j < 4; ++j) {
ref += coefs[i][j] * Math.pow(intervals[i], 3 - j);
ArgChecker.isFalse(Double.isNaN(coefs[i][j]), "Too large input");
ArgChecker.isFalse(Double.isInfinite(coefs[i][j]), "Too large input");
}
double bound = Math.max(Math.abs(ref) + Math.abs(yValuesSrt[i + 1]), 1.e-1);
ArgChecker.isTrue(Math.abs(ref - yValuesSrt[i + 1]) < ERROR * bound,
"Input is too large/small or data points are too close");
}
return new PiecewisePolynomialResult(DoubleArray.copyOf(xValuesSrt), DoubleMatrix.copyOf(coefs), 4, 1);
}
@Override
public PiecewisePolynomialResult interpolate(double[] xValues, double[][] yValuesMatrix) {
ArgChecker.notNull(xValues, "xValues");
ArgChecker.notNull(yValuesMatrix, "yValuesMatrix");
ArgChecker.isTrue(xValues.length == yValuesMatrix[0].length,
"(xValues length = yValuesMatrix's row vector length) should be true");
ArgChecker.isTrue(xValues.length > 2, "Data points should be >= 3");
int nDataPts = xValues.length;
int yValuesLen = yValuesMatrix[0].length;
int dim = yValuesMatrix.length;
for (int i = 0; i < nDataPts; ++i) {
ArgChecker.isFalse(Double.isNaN(xValues[i]), "xValues containing NaN");
ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xValues containing Infinity");
}
for (int i = 0; i < yValuesLen; ++i) {
for (int j = 0; j < dim; ++j) {
ArgChecker.isFalse(Double.isNaN(yValuesMatrix[j][i]), "yValuesMatrix containing NaN");
ArgChecker.isFalse(Double.isInfinite(yValuesMatrix[j][i]), "yValuesMatrix containing Infinity");
}
}
double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts);
int[] sortedPositions = IntStream.range(0, nDataPts).toArray();
DoubleArrayMath.sortPairs(xValuesSrt, sortedPositions);
ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues");
DoubleMatrix[] coefMatrix = new DoubleMatrix[dim];
for (int i = 0; i < dim; ++i) {
double[] yValuesSrt = DoubleArrayMath.reorderedCopy(yValuesMatrix[i], sortedPositions);
double[] intervals = _solver.intervalsCalculator(xValuesSrt);
double[] slopes = _solver.slopesCalculator(yValuesSrt, intervals);
double[] first = firstDerivativeCalculator(slopes);
coefMatrix[i] = DoubleMatrix.copyOf(_solver.solve(yValuesSrt, intervals, slopes, first));
for (int k = 0; k < intervals.length; ++k) {
double ref = 0.;
for (int j = 0; j < 4; ++j) {
ref += coefMatrix[i].get(k, j) * Math.pow(intervals[k], 3 - j);
ArgChecker.isFalse(Double.isNaN(coefMatrix[i].get(k, j)), "Too large input");
ArgChecker.isFalse(Double.isInfinite(coefMatrix[i].get(k, j)), "Too large input");
}
double bound = Math.max(Math.abs(ref) + Math.abs(yValuesSrt[k + 1]), 1.e-1);
ArgChecker.isTrue(Math.abs(ref - yValuesSrt[k + 1]) < ERROR * bound,
"Input is too large/small or data points are too close");
}
}
int nIntervals = coefMatrix[0].rowCount();
int nCoefs = coefMatrix[0].columnCount();
double[][] resMatrix = new double[dim * nIntervals][nCoefs];
for (int i = 0; i < nIntervals; ++i) {
for (int j = 0; j < dim; ++j) {
resMatrix[dim * i + j] = coefMatrix[j].row(i).toArray();
}
}
return new PiecewisePolynomialResult(DoubleArray.copyOf(xValuesSrt), DoubleMatrix.copyOf(resMatrix), nCoefs, dim);
}
@Override
public PiecewisePolynomialResultsWithSensitivity interpolateWithSensitivity(double[] xValues, double[] yValues) {
ArgChecker.notNull(xValues, "xValues");
ArgChecker.notNull(yValues, "yValues");
ArgChecker.isTrue(xValues.length == yValues.length, "(xValues length = yValues length) should be true");
ArgChecker.isTrue(xValues.length > 2, "Data points should be >= 3");
int nDataPts = xValues.length;
for (int i = 0; i < nDataPts; ++i) {
ArgChecker.isFalse(Double.isNaN(xValues[i]), "xValues containing NaN");
ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xValues containing Infinity");
ArgChecker.isFalse(Double.isNaN(yValues[i]), "yValues containing NaN");
ArgChecker.isFalse(Double.isInfinite(yValues[i]), "yValues containing Infinity");
}
ArgChecker.noDuplicates(xValues, "xValues");
double[] intervals = _solver.intervalsCalculator(xValues);
double[] slopes = _solver.slopesCalculator(yValues, intervals);
double[][] slopeSensitivity = _solver.slopeSensitivityCalculator(intervals);
DoubleArray[] firstWithSensitivity =
firstDerivativeWithSensitivityCalculator(yValues, intervals, slopes, slopeSensitivity);
DoubleMatrix[] resMatrix = _solver.solveWithSensitivity(yValues, intervals, slopes, slopeSensitivity, firstWithSensitivity);
for (int k = 0; k < nDataPts; k++) {
DoubleMatrix m = resMatrix[k];
int rows = m.rowCount();
int cols = m.columnCount();
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
ArgChecker.isTrue(Doubles.isFinite(m.get(i, j)), "Matrix contains a NaN or infinite");
}
}
}
DoubleMatrix coefMatrix = resMatrix[0];
for (int i = 0; i < nDataPts - 1; ++i) {
double ref = 0.;
for (int j = 0; j < 4; ++j) {
ref += coefMatrix.get(i, j) * Math.pow(intervals[i], 3 - j);
}
double bound = Math.max(Math.abs(ref) + Math.abs(yValues[i + 1]), 1.e-1);
ArgChecker.isTrue(Math.abs(ref - yValues[i + 1]) < ERROR * bound,
"Input is too large/small or data points are too close");
}
DoubleMatrix[] coefSenseMatrix = new DoubleMatrix[nDataPts - 1];
System.arraycopy(resMatrix, 1, coefSenseMatrix, 0, nDataPts - 1);
int nCoefs = coefMatrix.columnCount();
return new PiecewisePolynomialResultsWithSensitivity(
DoubleArray.copyOf(xValues), coefMatrix, nCoefs, 1, coefSenseMatrix);
}
private double[] firstDerivativeCalculator(double[] slopes) {
int nData = slopes.length + 1;
double[] res = new double[nData];
double[] slopesExt = getExtraPoints(slopes);
for (int i = 0; i < nData; ++i) {
if (Math.abs(slopesExt[i + 3] - slopesExt[i + 2]) == 0.) {
if (Math.abs(slopesExt[i + 1] - slopesExt[i]) == 0.) {
res[i] = 0.5 * (slopesExt[i + 1] + slopesExt[i + 2]);
} else {
res[i] = slopesExt[i + 2];
}
} else {
if (Math.abs(slopesExt[i + 1] - slopesExt[i]) == 0.) {
res[i] = slopesExt[i];
} else {
res[i] = (Math.abs(slopesExt[i + 3] - slopesExt[i + 2]) * slopesExt[i + 1] +
Math.abs(slopesExt[i + 1] - slopesExt[i]) * slopesExt[i + 2]) /
(Math.abs(slopesExt[i + 3] - slopesExt[i + 2]) + Math.abs(slopesExt[i + 1] - slopesExt[i]));
}
}
}
return res;
}
private DoubleArray[] firstDerivativeWithSensitivityCalculator(
double[] yValues,
double[] intervals,
double[] slopes,
double[][] slopeSensitivity) {
int nData = yValues.length;
double[] slopesExt = getExtraPoints(slopes);
double[][] slopeSensitivityExtTransp = new double[nData][nData + 3];
DoubleArray[] res = new DoubleArray[nData + 1];
DoubleMatrix senseMat = DoubleMatrix.copyOf(slopeSensitivity);
for (int i = 0; i < nData; ++i) {
slopeSensitivityExtTransp[i] = getExtraPoints(senseMat.column(i).toArray());
}
DoubleArray[] modSlopesWithSensitivity = modSlopesWithSensitivityCalculator(slopesExt, slopeSensitivityExtTransp);
DoubleArray modSlopesWithSense0 = modSlopesWithSensitivity[0];
double[] first = new double[nData];
for (int i = 0; i < nData; ++i) {
double[] tmp = new double[nData];
double den = (modSlopesWithSense0.get(i + 2) + modSlopesWithSense0.get(i));
if (den == 0.) {
first[i] = 0.5 * (slopesExt[i + 1] + slopesExt[i + 2]);
Arrays.fill(tmp, 0.);
double[] yValuesUp = Arrays.copyOf(yValues, nData);
double[] yValuesDw = Arrays.copyOf(yValues, nData);
for (int j = 0; j < nData; ++j) {
double div = Math.abs(yValues[j]) < SMALL ? EPS : yValues[j] * EPS;
yValuesUp[j] = Math.abs(yValues[j]) < SMALL ? EPS : yValues[j] * (1. + EPS);
yValuesDw[j] = Math.abs(yValues[j]) < SMALL ? -EPS : yValues[j] * (1. - EPS);
double firstUp = firstDerivativeCalculator(_solver.slopesCalculator(yValuesUp, intervals))[i];
double firstDw = firstDerivativeCalculator(_solver.slopesCalculator(yValuesDw, intervals))[i];
tmp[j] = 0.5 * (firstUp - firstDw) / div;
yValuesUp[j] = yValues[j];
yValuesDw[j] = yValues[j];
}
} else {
first[i] =
modSlopesWithSense0.get(i + 2) * slopesExt[i + 1] / den +
modSlopesWithSense0.get(i) * slopesExt[i + 2] / den;
for (int k = 0; k < nData; ++k) {
tmp[k] =
(modSlopesWithSense0.get(i + 2) * slopeSensitivityExtTransp[k][i + 1] +
modSlopesWithSense0.get(i) * slopeSensitivityExtTransp[k][i + 2]) / den
+ (slopesExt[i + 2] - slopesExt[i + 1]) *
(modSlopesWithSense0.get(i + 2) * modSlopesWithSensitivity[i + 1].get(k) -
modSlopesWithSense0.get(i) * modSlopesWithSensitivity[i + 3].get(k)) / den / den;
}
}
res[i + 1] = DoubleArray.copyOf(tmp);
}
res[0] = DoubleArray.copyOf(first);
return res;
}
private DoubleArray[] modSlopesWithSensitivityCalculator(double[] slopesExt, double[][] slopeSensitivityExtTransp) {
int nData = slopesExt.length - 3;
double[] modSlopes = new double[nData + 2];
DoubleArray[] res = new DoubleArray[nData + 3];
for (int i = 0; i < nData + 2; ++i) {
double[] tmp = new double[nData];
if (slopesExt[i + 1] == slopesExt[i]) {
modSlopes[i] = 0.;
Arrays.fill(tmp, 0.);
} else {
if (slopesExt[i + 1] > slopesExt[i]) {
modSlopes[i] = slopesExt[i + 1] - slopesExt[i];
for (int k = 0; k < nData; ++k) {
tmp[k] = slopeSensitivityExtTransp[k][i + 1] - slopeSensitivityExtTransp[k][i];
}
} else {
modSlopes[i] = -slopesExt[i + 1] + slopesExt[i];
for (int k = 0; k < nData; ++k) {
tmp[k] = -slopeSensitivityExtTransp[k][i + 1] + slopeSensitivityExtTransp[k][i];
}
}
}
res[i + 1] = DoubleArray.copyOf(tmp);
}
res[0] = DoubleArray.copyOf(modSlopes);
return res;
}
private double[] getExtraPoints(double[] data) {
int nData = data.length + 1;
double[] res = new double[nData + 3];
res[0] = 3. * data[0] - 2. * data[1];
res[1] = 2. * data[0] - data[1];
res[nData + 1] = 2. * data[nData - 2] - data[nData - 3];
res[nData + 2] = 3 * data[nData - 2] - 2. * data[nData - 3];
System.arraycopy(data, 0, res, 2, nData - 1);
return res;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy