All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.statistics.descriptive.ExponentiallyWeightedInterpolationQuantileMethod Maven / Gradle / Ivy

There is a newer version: 2.12.46
Show newest version
/*
 * Copyright (C) 2015 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.statistics.descriptive;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.DoubleArrayMath;
import com.opengamma.strata.collect.array.DoubleArray;

/**
 * Implementation of a quantile and expected shortfall estimator for series with exponentially weighted probabilities.
 * 

* Reference: "Value-at-risk", OpenGamma Documentation 31, Version 0.2, January 2016. Section A.4. */ public final class ExponentiallyWeightedInterpolationQuantileMethod extends QuantileCalculationMethod { /** The exponential weight. */ private final double lambda; /** * Constructor. *

* The exponential weight lambda must be > 0 and < 1.0. * * @param lambda the exponential weight */ public ExponentiallyWeightedInterpolationQuantileMethod(double lambda) { ArgChecker.inRangeExclusive(lambda, 0.0d, 1.0d, "exponential weight"); this.lambda = lambda; } @Override public QuantileResult quantileResultFromUnsorted(double level, DoubleArray sample) { return quantileDetails(level, sample, false, false); } @Override public QuantileResult quantileResultWithExtrapolationFromUnsorted(double level, DoubleArray sample) { return quantileDetails(level, sample, true, false); } @Override public double quantileFromUnsorted(double level, DoubleArray sample) { return quantileResultFromUnsorted(level, sample).getValue(); } @Override public double quantileWithExtrapolationFromUnsorted(double level, DoubleArray sample) { return quantileResultWithExtrapolationFromUnsorted(level, sample).getValue(); } @Override public QuantileResult expectedShortfallResultFromUnsorted(double level, DoubleArray sample) { return quantileDetails(level, sample, true, true); } @Override public double expectedShortfallFromUnsorted(double level, DoubleArray sample) { return expectedShortfallResultFromUnsorted(level, sample).getValue(); } /** * Compute the quantile estimation and the details used in the result. *

* The quantile level is in decimal, i.e. 99% = 0.99 and 0 < level < 1 should be satisfied. * This is measured from the bottom, that is, Thus the quantile estimation with the level 99% corresponds to * the smallest 99% observations. *

* The details consists on the indices of the samples actually used in the quantile computation - indices in the * input sample - and the weights for each of those samples. The details are sufficient to recompute the * quantile directly from the input sample. *

* The sample observations are supposed to be unsorted, the first step is to sort the data. * * @param level the quantile level * @param sample the sample observations * @return The quantile estimation and its details */ public QuantileResult quantileDetailsFromUnsorted(double level, DoubleArray sample) { return quantileDetails(level, sample, true, false); } /** * Compute the expected shortfall and the details used in the result. *

* The quantile level is in decimal, i.e. 99% = 0.99 and 0 < level < 1 should be satisfied. * This is measured from the bottom, that is, Thus the expected shortfall with the level 99% corresponds to * the smallest 99% observations. *

* If index value computed from the level is outside of the sample data range, the nearest data point is used, i.e., * expected short fall is computed with flat extrapolation. * Thus this is coherent to {@link #quantileWithExtrapolationFromUnsorted(double, DoubleArray)}. *

* The details consists on the indices of the samples actually used in the expected shortfall computation - indices * in the input sample - and the weights for each of those samples. The details are sufficient to recompute the * expected shortfall directly from the input sample. *

* The sample observations are supposed to be unsorted, the first step is to sort the data. * * @param level the quantile level * @param sample the sample observations * @return The expected shortfall estimation and its detail */ public QuantileResult expectedShortfallDetailsFromUnsorted(double level, DoubleArray sample) { return quantileDetails(level, sample, true, true); } // Generic quantile computation with quantile details. private QuantileResult quantileDetails( double level, DoubleArray sample, boolean isExtrapolated, boolean isEs) { int nbData = sample.size(); double[] w = weights(nbData); /* Sorting data and keeping weight information. The arrays are modified */ double[] s = sample.toArray(); DoubleArrayMath.sortPairs(s, w); double[] s2 = sample.toArray(); double[] order = new double[s2.length]; for (int i = 0; i < s2.length; i++) { order[i] = i; } DoubleArrayMath.sortPairs(s2, order); /* Find the index. */ double runningWeight = 0.0d; int index = nbData; while (runningWeight < 1.0d - level) { index--; runningWeight += w[index]; } if (isEs) { return esFromIndexRunningWeight(index, runningWeight, s2, w, order, level); } return quantileFromIndexRunningWeight(index, runningWeight, isExtrapolated, s2, w, order, level); } /** * Computes value-at-risk. * * @param index the index from which the VaR should be computed * @param runningWeight the running weight up to index * @param isExtrapolated flag indicating if value should be extrapolated (flat) beyond the last value * @param s the sorted sample * @param w the sorted weights * @param order the order of the sorted sample in the unsorted sample * @param level the level at which the VaR should be computed * @return the VaR and the details of sample data used to compute it */ private QuantileResult quantileFromIndexRunningWeight( int index, double runningWeight, boolean isExtrapolated, double[] s, double[] w, double[] order, double level) { int nbData = s.length; if ((index == nbData - 1) || (index == nbData)) { ArgChecker.isTrue(isExtrapolated, "Quantile can not be computed above the highest probability level."); return QuantileResult.of(s[nbData - 1], new int[]{(int) Math.round(order[nbData - 1])}, DoubleArray.of(1.0d)); } double alpha = (runningWeight - (1.0 - level)) / w[index]; int[] indices = new int[nbData - index]; double[] impacts = new double[nbData - index]; for (int i = 0; i < nbData - index; i++) { indices[i] = (int) Math.round(order[index + i]); } impacts[0] = 1 - alpha; impacts[1] = alpha; return QuantileResult.of((1 - alpha) * s[index] + alpha * s[index + 1], indices, DoubleArray.ofUnsafe(impacts)); } /** * Computes expected shortfall. * * @param index the index from which the ES should be computed * @param runningWeight the running weight up to index * @param s the sorted sample * @param w the sorted weights * @param order the order of the sorted sample in the unsorted sample * @param level the level at which the ES should be computed * @return the expected shortfall and the details of sample data used to compute it */ private QuantileResult esFromIndexRunningWeight( int index, double runningWeight, double[] s, double[] w, double[] order, double level) { int nbData = s.length; if ((index == nbData - 1) || (index == nbData)) { return QuantileResult.of(s[nbData - 1], new int[]{(int) Math.round(order[nbData - 1])}, DoubleArray.of(1.0d)); } double alpha = (runningWeight - (1.0 - level)) / w[index]; int[] indices = new int[nbData - index]; double[] impacts = new double[nbData - index]; for (int i = 0; i < nbData - index; i++) { indices[i] = (int) Math.round(order[index + i]); } impacts[0] = 0.5 * (1 - alpha) * (1 - alpha) * w[index] / (1.0 - level); impacts[1] = (alpha + 1) * 0.5 * (1 - alpha) * w[index] / (1.0 - level); for (int i = 1; i < nbData - index - 1; i++) { impacts[i] += 0.5 * w[index + i] / (1.0 - level); impacts[i + 1] += 0.5 * w[index + i] / (1.0 - level); } impacts[nbData - index - 1] += w[nbData - 1] / (1.0 - level); double es = 0; for (int i = 0; i < nbData - index; i++) { es += s[index + i] * impacts[i]; } return QuantileResult.of(es, indices, DoubleArray.ofUnsafe(impacts)); } @Override protected QuantileResult quantile(double level, DoubleArray sortedSample, boolean isExtrapolated) { throw new UnsupportedOperationException("Quantile available only from unsorted sample due to weights."); } @Override protected QuantileResult expectedShortfall(double level, DoubleArray sortedSample) { throw new UnsupportedOperationException("Expected Shortfall only from unsorted sample due to weights."); } /** * Returns the weights for a given sample size. * * @param size the sample size * @return the weights */ public double[] weights(int size) { double w1 = (1.0 - 1.0D / lambda) / (1.0d - Math.pow(lambda, -size)); double[] w = new double[size]; for (int i = 0; i < size; i++) { w[i] = w1 / Math.pow(lambda, i); } return w; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy