All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.statistics.distribution.GeneralizedParetoDistribution Maven / Gradle / Ivy

There is a newer version: 2.12.46
Show newest version
/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.statistics.distribution;

import java.util.Date;

import com.google.common.math.DoubleMath;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.impl.cern.MersenneTwister64;
import com.opengamma.strata.math.impl.cern.RandomEngine;

/**
 * Calculates the Pareto distribution.
 * 

* The generalized Pareto distribution is a family of power law probability * distributions with location parameter $\mu$, shape parameter $\xi$ and scale * parameter $\sigma$, where * $$ * \begin{eqnarray*} * \mu&\in&\Re,\\ * \xi&\in&\Re,\\ * \sigma&>&0 * \end{eqnarray*} * $$ * and with support * $$ * \begin{eqnarray*} * x\geq\mu\quad\quad\quad(\xi\geq 0)\\ * \mu\leq x\leq\mu-\frac{\sigma}{\xi}\quad(\xi<0) * \end{eqnarray*} * $$ * The cdf is given by: * $$ * \begin{align*} * F(z)&=1-\left(1 + \xi z\right)^{-\frac{1}{\xi}}\\ * z&=\frac{x-\mu}{\sigma} * \end{align*} * $$ * and the pdf is given by: * $$ * \begin{align*} * f(z)&=\frac{\left(1+\xi z\right)^{-\left(\frac{1}{\xi} + 1\right)}}{\sigma}\\ * z&=\frac{x-\mu}{\sigma} * \end{align*} * $$ * Given a uniform random number variable $U$ drawn from the interval $(0,1]$, a * Pareto-distributed random variable with parameters $\mu$, $\sigma$ and * $\xi$ is given by * $$ * \begin{align*} * X=\mu + \frac{\sigma\left(U^{-\xi}-1\right)}{\xi}\sim GPD(\mu,\sigma,\xi) * \end{align*} * $$ */ public class GeneralizedParetoDistribution implements ProbabilityDistribution { // TODO check cdf, pdf for support private final double _mu; private final double _sigma; private final double _ksi; // TODO better seed private final RandomEngine _engine; /** * Creates an instance. * * @param mu The location parameter * @param sigma The scale parameter, not negative or zero * @param ksi The shape parameter, not zero */ public GeneralizedParetoDistribution(double mu, double sigma, double ksi) { this(mu, sigma, ksi, new MersenneTwister64(new Date())); } /** * Creates an instance. * * @param mu The location parameter * @param sigma The scale parameter * @param ksi The shape parameter * @param engine A uniform random number generator, not null */ public GeneralizedParetoDistribution(double mu, double sigma, double ksi, RandomEngine engine) { ArgChecker.isTrue(sigma > 0, "sigma must be > 0"); ArgChecker.isTrue(!DoubleMath.fuzzyEquals(ksi, 0d, 1e-15), "ksi cannot be zero"); ArgChecker.notNull(engine, "engine"); _mu = mu; _sigma = sigma; _ksi = ksi; _engine = engine; } /** * Gets the location parameter. * * @return The location parameter */ public double getMu() { return _mu; } /** * Gets the scale parameter. * * @return The scale parameter */ public double getSigma() { return _sigma; } /** * Gets the shape parameter. * * @return The shape parameter */ public double getKsi() { return _ksi; } /** * {@inheritDoc} * @throws IllegalArgumentException If $x \not\in$ support */ @Override public double getCDF(Double x) { ArgChecker.notNull(x, "x"); return 1 - Math.pow(1 + _ksi * getZ(x), -1. / _ksi); } /** * {@inheritDoc} * @return Not supported * @throws UnsupportedOperationException always */ @Override public double getInverseCDF(Double p) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * @throws IllegalArgumentException If $x \not\in$ support */ @Override public double getPDF(Double x) { ArgChecker.notNull(x, "x"); return Math.pow(1 + _ksi * getZ(x), -(1. / _ksi + 1)) / _sigma; } /** * {@inheritDoc} */ @Override public double nextRandom() { return _mu + _sigma * (Math.pow(_engine.nextDouble(), -_ksi) - 1) / _ksi; } private double getZ(double x) { if (_ksi > 0 && x < _mu) { throw new IllegalArgumentException("Support for GPD is in the range x >= mu if ksi > 0"); } if (_ksi < 0 && (x <= _mu || x >= _mu - _sigma / _ksi)) { throw new IllegalArgumentException("Support for GPD is in the range mu <= x <= mu - sigma / ksi if ksi < 0"); } return (x - _mu) / _sigma; } @Override public int hashCode() { int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(_ksi); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(_mu); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(_sigma); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } GeneralizedParetoDistribution other = (GeneralizedParetoDistribution) obj; if (Double.doubleToLongBits(_ksi) != Double.doubleToLongBits(other._ksi)) { return false; } if (Double.doubleToLongBits(_mu) != Double.doubleToLongBits(other._mu)) { return false; } return Double.doubleToLongBits(_sigma) == Double.doubleToLongBits(other._sigma); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy