com.opengamma.strata.math.impl.statistics.leastsquare.NonLinearLeastSquareWithPenalty Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of strata-math Show documentation
Show all versions of strata-math Show documentation
Mathematic support for Strata
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.statistics.leastsquare;
import java.util.function.Function;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.math.MathException;
import com.opengamma.strata.math.impl.differentiation.VectorFieldFirstOrderDifferentiator;
import com.opengamma.strata.math.impl.linearalgebra.DecompositionFactory;
import com.opengamma.strata.math.impl.matrix.MatrixAlgebra;
import com.opengamma.strata.math.impl.matrix.MatrixAlgebraFactory;
import com.opengamma.strata.math.impl.matrix.OGMatrixAlgebra;
import com.opengamma.strata.math.linearalgebra.Decomposition;
import com.opengamma.strata.math.linearalgebra.DecompositionResult;
/**
* Modification to NonLinearLeastSquare to use a penalty function add to the normal chi^2 term of the form $a^TPa$ where
* $a$ is the vector of model parameters sort and P is some matrix. The idea is to extend the p-spline concept to
* non-linear models of the form $\hat{y}_j = H\left(\sum_{i=0}^{M-1} w_i b_i (x_j)\right)$ where $H(\cdot)$ is
* some non-linear function, $b_i(\cdot)$ are a set of basis functions and $w_i$ are the weights (to be found). As with
* (linear) p-splines, smoothness of the function is obtained by having a penalty on the nth order difference of the
* weights. The modified chi-squared is written as
* $\chi^2 = \sum_{i=0}^{N-1} \left(\frac{y_i-H\left(\sum_{k=0}^{M-1} w_k b_k (x_i)\right)}{\sigma_i} \right)^2 +
* \sum_{i,j=0}^{M-1}P_{i,j}x_ix_j$
*/
public class NonLinearLeastSquareWithPenalty {
private static final int MAX_ATTEMPTS = 100000;
// Review should we use Cholesky as default
private static final Decomposition> DEFAULT_DECOMP = DecompositionFactory.SV_COMMONS;
private static final OGMatrixAlgebra MA = new OGMatrixAlgebra();
private static final double EPS = 1e-8; // Default convergence tolerance on the relative change in chi2
/**
* Unconstrained allowed function - always returns true
*/
public static final Function UNCONSTRAINED = new Function() {
@Override
public Boolean apply(DoubleArray x) {
return true;
}
};
private final double _eps;
private final Decomposition> _decomposition;
private final MatrixAlgebra _algebra;
/**
* Default constructor. This uses SVD, {@link OGMatrixAlgebra} and a convergence tolerance of 1e-8
*/
public NonLinearLeastSquareWithPenalty() {
this(DEFAULT_DECOMP, MA, EPS);
}
/**
* Constructor allowing matrix decomposition to be set.
* This uses {@link OGMatrixAlgebra} and a convergence tolerance of 1e-8.
*
* @param decomposition Matrix decomposition (see {@link DecompositionFactory} for list)
*/
public NonLinearLeastSquareWithPenalty(Decomposition> decomposition) {
this(decomposition, MA, EPS);
}
/**
* Constructor allowing convergence tolerance to be set.
* This uses SVD and {@link OGMatrixAlgebra}.
*
* @param eps Convergence tolerance
*/
public NonLinearLeastSquareWithPenalty(double eps) {
this(DEFAULT_DECOMP, MA, eps);
}
/**
* Constructor allowing matrix decomposition and convergence tolerance to be set.
* This uses {@link OGMatrixAlgebra}.
*
* @param decomposition Matrix decomposition (see {@link DecompositionFactory} for list)
* @param eps Convergence tolerance
*/
public NonLinearLeastSquareWithPenalty(Decomposition> decomposition, double eps) {
this(decomposition, MA, eps);
}
/**
* General constructor.
*
* @param decomposition Matrix decomposition (see {@link DecompositionFactory} for list)
* @param algebra The matrix algebra (see {@link MatrixAlgebraFactory} for list)
* @param eps Convergence tolerance
*/
public NonLinearLeastSquareWithPenalty(Decomposition> decomposition, MatrixAlgebra algebra, double eps) {
ArgChecker.notNull(decomposition, "decomposition");
ArgChecker.notNull(algebra, "algebra");
ArgChecker.isTrue(eps > 0, "must have positive eps");
_decomposition = decomposition;
_algebra = algebra;
_eps = eps;
}
/**
* Use this when the model is given as a function of its parameters only (i.e. a function that takes a set of
* parameters and return a set of model values,
* so the measurement points are already known to the function), and analytic parameter sensitivity is not available.
*
* @param observedValues Set of measurement values
* @param func The model as a function of its parameters only
* @param startPos Initial value of the parameters
* @param penalty Penalty matrix
* @return value of the fitted parameters
*/
public LeastSquareWithPenaltyResults solve(
DoubleArray observedValues,
Function func,
DoubleArray startPos,
DoubleMatrix penalty) {
int n = observedValues.size();
VectorFieldFirstOrderDifferentiator jac = new VectorFieldFirstOrderDifferentiator();
return solve(observedValues, DoubleArray.filled(n, 1.0), func, jac.differentiate(func), startPos, penalty);
}
/**
* Use this when the model is given as a function of its parameters only (i.e. a function that takes a set of
* parameters and return a set of model values,
* so the measurement points are already known to the function), and analytic parameter sensitivity is not available
* @param observedValues Set of measurement values
* @param sigma Set of measurement errors
* @param func The model as a function of its parameters only
* @param startPos Initial value of the parameters
* @param penalty Penalty matrix
* @return value of the fitted parameters
*/
public LeastSquareWithPenaltyResults solve(
DoubleArray observedValues,
DoubleArray sigma,
Function func,
DoubleArray startPos,
DoubleMatrix penalty) {
VectorFieldFirstOrderDifferentiator jac = new VectorFieldFirstOrderDifferentiator();
return solve(observedValues, sigma, func, jac.differentiate(func), startPos, penalty);
}
/**
* Use this when the model is given as a function of its parameters only (i.e. a function that takes a set of
* parameters and return a set of model values,
* so the measurement points are already known to the function), and analytic parameter sensitivity is not available
* @param observedValues Set of measurement values
* @param sigma Set of measurement errors
* @param func The model as a function of its parameters only
* @param startPos Initial value of the parameters
* @param penalty Penalty matrix
* @param allowedValue a function which returned true if the new trial position is allowed by the model. An example
* would be to enforce positive parameters
* without resorting to a non-linear parameter transform. In some circumstances this approach will lead to slow
* convergence.
* @return value of the fitted parameters
*/
public LeastSquareWithPenaltyResults solve(
DoubleArray observedValues,
DoubleArray sigma,
Function func,
DoubleArray startPos,
DoubleMatrix penalty,
Function allowedValue) {
VectorFieldFirstOrderDifferentiator jac = new VectorFieldFirstOrderDifferentiator();
return solve(observedValues, sigma, func, jac.differentiate(func), startPos, penalty, allowedValue);
}
/**
* Use this when the model is given as a function of its parameters only (i.e. a function that takes a set of
* parameters and return a set of model values,
* so the measurement points are already known to the function), and analytic parameter sensitivity is available
* @param observedValues Set of measurement values
* @param sigma Set of measurement errors
* @param func The model as a function of its parameters only
* @param jac The model sensitivity to its parameters (i.e. the Jacobian matrix) as a function of its parameters only
* @param startPos Initial value of the parameters
* @param penalty Penalty matrix
* @return the least-square results
*/
public LeastSquareWithPenaltyResults solve(
DoubleArray observedValues,
DoubleArray sigma,
Function func,
Function jac,
DoubleArray startPos, DoubleMatrix penalty) {
return solve(observedValues, sigma, func, jac, startPos, penalty, UNCONSTRAINED);
}
/**
* Use this when the model is given as a function of its parameters only (i.e. a function that takes a set of
* parameters and return a set of model values,
* so the measurement points are already known to the function), and analytic parameter sensitivity is available
* @param observedValues Set of measurement values
* @param sigma Set of measurement errors
* @param func The model as a function of its parameters only
* @param jac The model sensitivity to its parameters (i.e. the Jacobian matrix) as a function of its parameters only
* @param startPos Initial value of the parameters
* @param penalty Penalty matrix (must be positive semi-definite)
* @param allowedValue a function which returned true if the new trial position is allowed by the model. An example
* would be to enforce positive parameters
* without resorting to a non-linear parameter transform. In some circumstances this approach will lead to slow
* convergence.
* @return the least-square results
*/
public LeastSquareWithPenaltyResults solve(
DoubleArray observedValues,
DoubleArray sigma,
Function func,
Function jac,
DoubleArray startPos,
DoubleMatrix penalty,
Function allowedValue) {
ArgChecker.notNull(observedValues, "observedValues");
ArgChecker.notNull(sigma, " sigma");
ArgChecker.notNull(func, " func");
ArgChecker.notNull(jac, " jac");
ArgChecker.notNull(startPos, "startPos");
int nObs = observedValues.size();
ArgChecker.isTrue(nObs == sigma.size(), "observedValues and sigma must be same length");
ArgChecker.isTrue(allowedValue.apply(startPos),
"The start position {} is not valid for this model. Please choose a valid start position", startPos);
DoubleMatrix alpha;
DecompositionResult decmp;
DoubleArray theta = startPos;
double lambda = 0.0; // TODO debug if the model is linear, it will be solved in 1 step
double newChiSqr, oldChiSqr;
DoubleArray error = getError(func, observedValues, sigma, theta);
DoubleArray newError;
DoubleMatrix jacobian = getJacobian(jac, sigma, theta);
oldChiSqr = getChiSqr(error);
double p = getANorm(penalty, theta);
oldChiSqr += p;
DoubleArray beta = getChiSqrGrad(error, jacobian);
DoubleArray temp = (DoubleArray) _algebra.multiply(penalty, theta);
beta = (DoubleArray) _algebra.subtract(beta, temp);
for (int count = 0; count < MAX_ATTEMPTS; count++) {
alpha = getModifiedCurvatureMatrix(jacobian, lambda, penalty);
DoubleArray deltaTheta;
try {
decmp = _decomposition.apply(alpha);
deltaTheta = decmp.solve(beta);
} catch (Exception e) {
throw new MathException(e);
}
DoubleArray trialTheta = (DoubleArray) _algebra.add(theta, deltaTheta);
if (!allowedValue.apply(trialTheta)) {
lambda = increaseLambda(lambda);
continue;
}
newError = getError(func, observedValues, sigma, trialTheta);
p = getANorm(penalty, trialTheta);
newChiSqr = getChiSqr(newError);
newChiSqr += p;
// Check for convergence when no improvement in chiSqr occurs
if (Math.abs(newChiSqr - oldChiSqr) / (1 + oldChiSqr) < _eps) {
DoubleMatrix alpha0 = lambda == 0.0 ? alpha : getModifiedCurvatureMatrix(jacobian, 0.0, penalty);
if (lambda > 0.0) {
decmp = _decomposition.apply(alpha0);
}
return finish(alpha0, decmp, newChiSqr - p, p, jacobian, trialTheta, sigma);
}
if (newChiSqr < oldChiSqr) {
lambda = decreaseLambda(lambda);
theta = trialTheta;
error = newError;
jacobian = getJacobian(jac, sigma, trialTheta);
beta = getChiSqrGrad(error, jacobian);
temp = (DoubleArray) _algebra.multiply(penalty, theta);
beta = (DoubleArray) _algebra.subtract(beta, temp);
oldChiSqr = newChiSqr;
} else {
lambda = increaseLambda(lambda);
}
}
throw new MathException("Could not converge in " + MAX_ATTEMPTS + " attempts");
}
private double decreaseLambda(double lambda) {
return lambda / 10;
}
private double increaseLambda(double lambda) {
if (lambda == 0.0) { // this will happen the first time a full quadratic step fails
return 0.1;
}
return lambda * 10;
}
private LeastSquareWithPenaltyResults finish(
DoubleMatrix alpha,
DecompositionResult decmp,
double chiSqr,
double penalty,
DoubleMatrix jacobian,
DoubleArray newTheta,
DoubleArray sigma) {
DoubleMatrix covariance = decmp.solve(DoubleMatrix.identity(alpha.rowCount()));
DoubleMatrix bT = getBTranspose(jacobian, sigma);
DoubleMatrix inverseJacobian = decmp.solve(bT);
return new LeastSquareWithPenaltyResults(chiSqr, penalty, newTheta, covariance, inverseJacobian);
}
private DoubleArray getError(
Function func,
DoubleArray observedValues,
DoubleArray sigma,
DoubleArray theta) {
int n = observedValues.size();
DoubleArray modelValues = func.apply(theta);
ArgChecker.isTrue(n == modelValues.size(),
"Number of data points different between model (" + modelValues.size() + ") and observed (" + n + ")");
return DoubleArray.of(n, i -> (observedValues.get(i) - modelValues.get(i)) / sigma.get(i));
}
private DoubleMatrix getBTranspose(DoubleMatrix jacobian, DoubleArray sigma) {
int n = jacobian.rowCount();
int m = jacobian.columnCount();
DoubleMatrix res = DoubleMatrix.filled(m, n);
double[][] data = res.toArray();
for (int i = 0; i < n; i++) {
double sigmaInv = 1.0 / sigma.get(i);
for (int k = 0; k < m; k++) {
data[k][i] = jacobian.get(i, k) * sigmaInv;
}
}
return DoubleMatrix.ofUnsafe(data);
}
private DoubleMatrix getJacobian(Function jac, DoubleArray sigma, DoubleArray theta) {
DoubleMatrix res = jac.apply(theta);
double[][] data = res.toArray();
int n = res.rowCount();
int m = res.columnCount();
ArgChecker.isTrue(theta.size() == m, "Jacobian is wrong size");
ArgChecker.isTrue(sigma.size() == n, "Jacobian is wrong size");
for (int i = 0; i < n; i++) {
double sigmaInv = 1.0 / sigma.get(i);
for (int j = 0; j < m; j++) {
data[i][j] *= sigmaInv;
}
}
return DoubleMatrix.ofUnsafe(data);
}
private double getChiSqr(DoubleArray error) {
return _algebra.getInnerProduct(error, error);
}
private DoubleArray getChiSqrGrad(DoubleArray error, DoubleMatrix jacobian) {
return (DoubleArray) _algebra.multiply(error, jacobian);
}
private DoubleMatrix getModifiedCurvatureMatrix(DoubleMatrix jacobian, double lambda, DoubleMatrix penalty) {
double onePLambda = 1.0 + lambda;
int m = jacobian.columnCount();
DoubleMatrix alpha = (DoubleMatrix) MA.add(MA.matrixTransposeMultiplyMatrix(jacobian), penalty);
// scale the diagonal
double[][] data = alpha.toArray();
for (int i = 0; i < m; i++) {
data[i][i] *= onePLambda;
}
return DoubleMatrix.ofUnsafe(data);
}
private double getANorm(DoubleMatrix a, DoubleArray x) {
int n = x.size();
double sum = 0.0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
sum += a.get(i, j) * x.get(i) * x.get(j);
}
}
return sum;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy