com.opengamma.strata.math.impl.integration.GaussHermiteWeightAndAbscissaFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of strata-math Show documentation
Show all versions of strata-math Show documentation
Mathematic support for Strata
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.integration;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.tuple.Pair;
import com.opengamma.strata.math.impl.function.DoubleFunction1D;
import com.opengamma.strata.math.impl.function.special.OrthonormalHermitePolynomialFunction;
import com.opengamma.strata.math.impl.rootfinding.NewtonRaphsonSingleRootFinder;
/**
* Class that generates weights and abscissas for Gauss-Hermite quadrature.
* Orthonormal Hermite polynomials $H_N$ are used to generate the weights (see
* {@link OrthonormalHermitePolynomialFunction})
* using the formula:
* $$
* \begin{align*}
* w_i = \frac{2}{(H_n'(x_i))^2}
* \end{align*}
* $$
* where $x_i$ is the $i^{th}$ root of the orthogonal polynomial and $H_i'$ is
* the first derivative of the $i^{th}$ polynomial.
*/
public class GaussHermiteWeightAndAbscissaFunction implements QuadratureWeightAndAbscissaFunction {
/** Weight generator */
private static final OrthonormalHermitePolynomialFunction HERMITE = new OrthonormalHermitePolynomialFunction();
/** The root-finder */
private static final NewtonRaphsonSingleRootFinder ROOT_FINDER = new NewtonRaphsonSingleRootFinder(1e-12);
@Override
public GaussianQuadratureData generate(int n) {
ArgChecker.isTrue(n > 0);
double[] x = new double[n];
double[] w = new double[n];
boolean odd = n % 2 != 0;
int m = (n + 1) / 2 - (odd ? 1 : 0);
Pair[] polynomials = HERMITE.getPolynomialsAndFirstDerivative(n);
Pair pair = polynomials[n];
DoubleFunction1D function = pair.getFirst();
DoubleFunction1D derivative = pair.getSecond();
double root = 0;
for (int i = 0; i < m; i++) {
root = getInitialRootGuess(root, i, n, x);
root = ROOT_FINDER.getRoot(function, derivative, root);
double dp = derivative.applyAsDouble(root);
x[i] = -root;
x[n - 1 - i] = root;
w[i] = 2. / (dp * dp);
w[n - 1 - i] = w[i];
}
if (odd) {
double dp = derivative.applyAsDouble(0.0);
w[m] = 2. / dp / dp;
}
return new GaussianQuadratureData(x, w);
}
private double getInitialRootGuess(double previousRoot, int i, int n, double[] x) {
if (i == 0) {
return Math.sqrt(2 * n + 1) - 1.85575 * Math.pow(2 * n + 1, -1. / 6);
}
if (i == 1) {
return previousRoot - 1.14 * Math.pow(n, 0.426) / previousRoot;
}
if (i == 2) {
return 1.86 * previousRoot + 0.86 * x[0];
}
if (i == 3) {
return 1.91 * previousRoot + 0.91 * x[1];
}
return 2 * previousRoot + x[i - 2];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy