com.opengamma.strata.math.impl.linearalgebra.CholeskyDecompositionOpenGamma Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of strata-math Show documentation
Show all versions of strata-math Show documentation
Mathematic support for Strata
/*
* Copyright (C) 2011 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.linearalgebra;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.math.linearalgebra.Decomposition;
/**
* OpenGamma implementation of the Cholesky decomposition and its differentiation.
*/
public class CholeskyDecompositionOpenGamma implements Decomposition {
/**
* The input matrix symmetry is checked. If the relative difference abs(Aij-Aji) > max(abs(Aij), abs(Aji)) * e_sym, the matrix is considered non-symmetric.
* The default value for the threshold e_sym.
*/
public static final double DEFAULT_SYMMETRY_THRESHOLD = 1.0E-10;
/**
* In the decomposition, the positivity of the matrix is checked. If the absolute value Lii < e_pos the matrix is considered non-positive.
* The default value for the threshold e_pos.
*/
public static final double DEFAULT_POSITIVITY_THRESHOLD = 1.0E-10;
/**
* {@inheritDoc}
*/
@Override
public CholeskyDecompositionResult apply(DoubleMatrix x) {
return evaluate(x, DEFAULT_SYMMETRY_THRESHOLD, DEFAULT_POSITIVITY_THRESHOLD);
}
/**
* Perform the decomposition with a given symmetry and positivity threshold.
* @param matrix The matrix to decompose.
* @param symmetryThreshold The symmetry threshold.
* @param positivityThreshold The positivity threshold.
* @return The Cholesky decomposition.
*/
public CholeskyDecompositionResult evaluate(DoubleMatrix matrix, double symmetryThreshold, double positivityThreshold) {
ArgChecker.notNull(matrix, "Matrix null");
int nbRow = matrix.rowCount();
int nbCol = matrix.columnCount();
ArgChecker.isTrue(nbRow == nbCol, "Matrix not square");
double[][] l = new double[nbRow][nbRow];
// Check symmetry and initial fill of _lTArray
for (int looprow = 0; looprow < nbRow; looprow++) {
for (int loopcol = 0; loopcol <= looprow; loopcol++) {
double rowcol = matrix.get(looprow, loopcol);
double colrow = matrix.get(loopcol, looprow);
double maxValue = Math.max(Math.abs(rowcol), Math.abs(colrow));
double diff = Math.abs(rowcol - colrow);
ArgChecker.isTrue(diff <= maxValue * symmetryThreshold, "Matrix not symmetrical");
l[looprow][loopcol] = rowcol;
}
}
// The decomposition
for (int loopcol = 0; loopcol < nbCol; loopcol++) {
ArgChecker.isTrue(l[loopcol][loopcol] > positivityThreshold, "Matrix not positive");
l[loopcol][loopcol] = Math.sqrt(l[loopcol][loopcol]); // Pivot
double lInverse = 1.0 / l[loopcol][loopcol];
for (int looprow = loopcol + 1; looprow < nbRow; looprow++) { // Current column
l[looprow][loopcol] *= lInverse;
}
for (int j = loopcol + 1; j < nbRow; j++) { // Other columns
for (int i = j; i < nbRow; i++) {
l[i][j] -= l[i][loopcol] * l[j][loopcol];
}
}
}
return new CholeskyDecompositionOpenGammaResult(l);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy