All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.statistics.distribution.BivariateNormalDistribution Maven / Gradle / Ivy

There is a newer version: 2.12.46
Show newest version
/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.statistics.distribution;

import com.opengamma.strata.collect.ArgChecker;

/**
 * The bivariate normal distribution is a continuous probability distribution
 * of two variables, $x$ and $y$, with cdf
 * $$
 * \begin{align*}
 * M(x, y, \rho) = \frac{1}{2\pi\sqrt{1 - \rho^2}}\int_{-\infty}^x\int_{-\infty}^{y} e^{\frac{-(X^2 - 2\rho XY + Y^2)}{2(1 - \rho^2)}} dX dY
 * \end{align*}
 * $$
 * where $\rho$ is the correlation between $x$ and $y$.
 * 

* The implementation of the cdf is taken from "Better Approximations to Cumulative Normal Functions", West * (link). */ public class BivariateNormalDistribution implements ProbabilityDistribution { private static final ProbabilityDistribution NORMAL = new NormalDistribution(0, 1); private static final double TWO_PI = 2 * Math.PI; private static final double[] X = new double[] {0.04691008, 0.23076534, 0.5, 0.76923466, 0.95308992}; private static final double[] Y = new double[] {0.018854042, 0.038088059, 0.0452707394, 0.038088059, 0.018854042}; /** * Calculates CDF. * * @param x The parameters for the function, $(x, y, \rho$, with $-1 \geq \rho \geq 1$, not null * @return The cdf */ @Override public double getCDF(double[] x) { ArgChecker.notNull(x, "x"); ArgChecker.isTrue(x.length == 3, "Need a, b and rho values"); ArgChecker.isTrue(x[2] >= -1 && x[2] <= 1, "Correlation must be >= -1 and <= 1"); double a = x[0]; double b = x[1]; double rho = x[2]; if (a == Double.POSITIVE_INFINITY || b == Double.POSITIVE_INFINITY) { return 1; } if (a == Double.NEGATIVE_INFINITY || b == Double.NEGATIVE_INFINITY) { return 0; } double sumSq = (a * a + b * b) / 2.; double rho1, rho2, rho3, ab, absDiff, h5, c, d, mult = 0, rho3Sq, eab, e, result; if (Math.abs(rho) >= 0.7) { rho1 = 1 - rho * rho; rho2 = Math.sqrt(rho1); if (rho < 0) { b *= -1; } ab = a * b; eab = Math.exp(-ab / 2.); if (Math.abs(rho) < 1) { absDiff = Math.abs(a - b); h5 = absDiff * absDiff / 2.; absDiff = absDiff / rho2; c = 0.5 - ab / 8.; d = 3. - 2. * c * h5; mult = 0.13298076 * absDiff * d * (1 - NORMAL.getCDF(absDiff)) - Math.exp(-h5 / rho1) * (d + c * rho1) * 0.053051647; for (int i = 0; i < 5; i++) { rho3 = rho2 * X[i]; rho3Sq = rho3 * rho3; rho1 = Math.sqrt(1 - rho3Sq); if (eab == 0) { e = 0; } else { e = Math.exp(-ab / (1 + rho1)) / rho1 / eab; } mult = mult - Y[i] * Math.exp(-h5 / rho3Sq) * (e - 1 - c * rho3Sq); } } double corr = Double.isNaN(mult) ? 0. : mult * rho2 * eab; result = corr + NORMAL.getCDF(Math.min(a, b)); if (rho < 0) { result = NORMAL.getCDF(a) - result; } return result; } ab = a * b; if (rho != 0) { for (int i = 0; i < 5; i++) { rho3 = rho * X[i]; rho1 = 1 - rho3 * rho3; mult = mult + Y[i] * Math.exp((rho3 * ab - sumSq) / rho1) / Math.sqrt(rho1); } } double corr = Double.isNaN(mult) ? 0. : rho * mult; return NORMAL.getCDF(a) * NORMAL.getCDF(b) + corr; } /** * {@inheritDoc} * @return Not supported * @throws UnsupportedOperationException always */ @Override public double getInverseCDF(double[] p) { throw new UnsupportedOperationException(); } /** * Calculates PDF. * * @param x The parameters for the function, $(x, y, \rho$, with $-1 \geq \rho \geq 1$, not null * @return The pdf */ @Override public double getPDF(double[] x) { ArgChecker.notNull(x, "x"); ArgChecker.isTrue(x.length == 3, "Need a, b and rho values"); ArgChecker.isTrue(x[2] >= -1 && x[2] <= 1, "Correlation must be >= -1 and <= 1"); double denom = 1 - x[2] * x[2]; return Math.exp(-(x[0] * x[0] - 2 * x[2] * x[0] * x[1] + x[1] * x[1]) / (2 * denom)) / (TWO_PI * Math.sqrt(denom)); } /** * {@inheritDoc} * @return Not supported * @throws UnsupportedOperationException always */ @Override public double nextRandom() { throw new UnsupportedOperationException(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy