com.opengamma.strata.pricer.impl.option.BlackScholesFormulaRepository Maven / Gradle / Ivy
/*
* Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.pricer.impl.option;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.impl.statistics.distribution.NormalDistribution;
import com.opengamma.strata.math.impl.statistics.distribution.ProbabilityDistribution;
/**
* The primary repository for Black-Scholes formulas, including the price and greeks.
*
* When the formula involves ambiguous quantities, a reference value (rather than NaN) is returned
* Note that the formulas are expressed in terms of interest rate (r) and cost of carry (b),
* then d_1 and d_2 are d_{1,2} = \frac{\ln(S/X) + (b \pm \sigma^2 ) T}{\sigma \sqrt{T}}.
*/
public final class BlackScholesFormulaRepository {
private static final ProbabilityDistribution NORMAL = new NormalDistribution(0, 1);
private static final double SMALL = 1e-13;
private static final double LARGE = 1e13;
// restricted constructor
private BlackScholesFormulaRepository() {
}
//-------------------------------------------------------------------------
/**
* Computes the spot price.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @param isCall true for call, false for put
* @return the spot price
*/
public static double price(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
if (interestRate > LARGE) {
return 0d;
}
if (-interestRate > LARGE) {
return Double.POSITIVE_INFINITY;
}
double discount = Math.abs(interestRate) < SMALL ? 1d : Math.exp(-interestRate * timeToExpiry);
if (costOfCarry > LARGE) {
return isCall ? Double.POSITIVE_INFINITY : 0d;
}
if (-costOfCarry > LARGE) {
double res = isCall ? 0d : (discount > SMALL ? strike * discount : 0d);
return Double.isNaN(res) ? discount : res;
}
double factor = Math.exp(costOfCarry * timeToExpiry);
if (spot > LARGE * strike) {
double tmp = Math.exp((costOfCarry - interestRate) * timeToExpiry);
return isCall ? (tmp > SMALL ? spot * tmp : 0d) : 0d;
}
if (LARGE * spot < strike) {
return (isCall || discount < SMALL) ? 0d : strike * discount;
}
if (spot > LARGE && strike > LARGE) {
double tmp = Math.exp((costOfCarry - interestRate) * timeToExpiry);
return isCall ? (tmp > SMALL ? spot * tmp : 0d) : (discount > SMALL ? strike * discount : 0d);
}
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
int sign = isCall ? 1 : -1;
double rescaledSpot = factor * spot;
if (sigmaRootT < SMALL) {
double res = isCall ?
(rescaledSpot > strike ? discount * (rescaledSpot - strike) : 0d) :
(rescaledSpot < strike ? discount * (strike - rescaledSpot) : 0d);
return Double.isNaN(res) ? sign * (spot - discount * strike) : res;
}
double d1 = 0d;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE) {
double coefD1 = (costOfCarry / lognormalVol + 0.5 * lognormalVol);
double coefD2 = (costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmpD1 = coefD1 * rootT;
double tmpD2 = coefD2 * rootT;
d1 = Double.isNaN(tmpD1) ? 0d : tmpD1;
d2 = Double.isNaN(tmpD2) ? 0d : tmpD2;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
d2 = d1 - sigmaRootT;
}
double res = sign * discount * (rescaledSpot * NORMAL.getCDF(sign * d1) - strike * NORMAL.getCDF(sign * d2));
return Double.isNaN(res) ? 0d : Math.max(res, 0d);
}
//-------------------------------------------------------------------------
/**
* Computes the spot delta.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @param isCall true for call, false for put
* @return the spot delta
*/
public static double delta(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double coef = 0d;
if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) ||
Math.abs(costOfCarry - interestRate) < SMALL) {
coef = 1d; //ref value is returned
} else {
double rate = costOfCarry - interestRate;
if (rate > LARGE) {
return isCall ? Double.POSITIVE_INFINITY : (costOfCarry > LARGE ? 0d : Double.NEGATIVE_INFINITY);
}
if (-rate > LARGE) {
return 0d;
}
coef = Math.exp(rate * timeToExpiry);
}
if (spot > LARGE * strike) {
return isCall ? coef : 0d;
}
if (spot < SMALL * strike) {
return isCall ? 0d : -coef;
}
int sign = isCall ? 1 : -1;
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
double factor = Math.exp(costOfCarry * timeToExpiry);
if (Double.isNaN(factor)) {
factor = 1d; //ref value is returned
}
double rescaledSpot = spot * factor;
double d1 = 0d;
if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) {
double coefD1 = (costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmp = coefD1 * rootT;
d1 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL) {
return isCall ? (rescaledSpot > strike ? coef : 0d) : (rescaledSpot < strike ? -coef : 0d);
}
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
}
double norm = NORMAL.getCDF(sign * d1);
return norm < SMALL ? 0d : sign * coef * norm;
}
//-------------------------------------------------------------------------
/**
* Computes the strike for the delta.
*
* Note that the parameter range is more restricted for this method because the
* strike is undetermined for infinite/zero valued parameters.
*
* @param spot the spot value of the underlying
* @param spotDelta The spot delta
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @param isCall true for call, false for put
* @return the strike
*/
public static double strikeForDelta(
double spot,
double spotDelta,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot > 0d, "non-positive/NaN spot; have {}", spot);
ArgChecker.isTrue(timeToExpiry > 0d, "non-positive/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol > 0d, "non-positive/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
ArgChecker.isFalse(Double.isInfinite(spot), "spot is infinite");
ArgChecker.isFalse(Double.isInfinite(spotDelta), "spotDelta is infinite");
ArgChecker.isFalse(Double.isInfinite(timeToExpiry), "timeToExpiry is infinite");
ArgChecker.isFalse(Double.isInfinite(lognormalVol), "lognormalVol is infinite");
ArgChecker.isFalse(Double.isInfinite(interestRate), "interestRate is infinite");
ArgChecker.isFalse(Double.isInfinite(costOfCarry), "costOfCarry is infinite");
double rescaledDelta = spotDelta * Math.exp((-costOfCarry + interestRate) * timeToExpiry);
ArgChecker.isTrue((isCall && rescaledDelta > 0d && rescaledDelta < 1.) || (!isCall && spotDelta < 0d && rescaledDelta > -1.),
"delta/Math.exp((costOfCarry - interestRate) * timeToExpiry) out of range, ", rescaledDelta);
double sigmaRootT = lognormalVol * Math.sqrt(timeToExpiry);
double rescaledSpot = spot * Math.exp(costOfCarry * timeToExpiry);
int sign = isCall ? 1 : -1;
double d1 = sign * NORMAL.getInverseCDF(sign * rescaledDelta);
return rescaledSpot * Math.exp(-d1 * sigmaRootT + 0.5 * sigmaRootT * sigmaRootT);
}
//-------------------------------------------------------------------------
/**
* Computes the dual delta.
*
* This is the first derivative of option price with respect to strike.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @param isCall true for call, false for put
* @return the dual delta
*/
public static double dualDelta(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double discount = 0d;
if (-interestRate > LARGE) {
return isCall ? Double.NEGATIVE_INFINITY : (costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY);
}
if (interestRate > LARGE) {
return 0d;
}
discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry);
if (spot > LARGE * strike) {
return isCall ? -discount : 0d;
}
if (spot < SMALL * strike) {
return isCall ? 0d : discount;
}
int sign = isCall ? 1 : -1;
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
double factor = Math.exp(costOfCarry * timeToExpiry);
if (Double.isNaN(factor)) {
factor = 1d; //ref value is returned
}
double rescaledSpot = spot * factor;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) {
double coefD2 = (costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmp = coefD2 * rootT;
d2 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL) {
return isCall ? (rescaledSpot > strike ? -discount : 0d) : (rescaledSpot < strike ? discount : 0d);
}
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
}
double norm = NORMAL.getCDF(sign * d2);
return norm < SMALL ? 0d : -sign * discount * norm;
}
//-------------------------------------------------------------------------
/**
* Computes the spot gamma.
*
* This is the second order sensitivity of the spot option value to the spot.
*
* $\frac{\partial^2 FV}{\partial^2 f}$.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the spot gamma
*/
public static double gamma(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double coef = 0d;
if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) ||
Math.abs(costOfCarry - interestRate) < SMALL) {
coef = 1d; //ref value is returned
} else {
double rate = costOfCarry - interestRate;
if (rate > LARGE) {
return costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY;
}
if (-rate > LARGE) {
return 0d;
}
coef = Math.exp(rate * timeToExpiry);
}
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
if (spot > LARGE * strike || spot < SMALL * strike || sigmaRootT > LARGE) {
return 0d;
}
double factor = Math.exp(costOfCarry * timeToExpiry);
if (Double.isNaN(factor)) {
factor = 1d; //ref value is returned
}
double d1 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) {
double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ?
Math.signum(costOfCarry) + 0.5 * lognormalVol :
(costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmp = coefD1 * rootT;
d1 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d1 = Double.isNaN(tmp) ? 0d : tmp;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
}
}
double norm = NORMAL.getPDF(d1);
double res = norm < SMALL ? 0d : coef * norm / spot / sigmaRootT;
return Double.isNaN(res) ? Double.POSITIVE_INFINITY : res;
}
//-------------------------------------------------------------------------
/**
* Computes the dual gamma.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the dual gamma
*/
public static double dualGamma(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
if (-interestRate > LARGE) {
return costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY;
}
if (interestRate > LARGE) {
return 0d;
}
double discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry);
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
if (spot > LARGE * strike || spot < SMALL * strike || sigmaRootT > LARGE) {
return 0d;
}
double factor = Math.exp(costOfCarry * timeToExpiry);
if (Double.isNaN(factor)) {
factor = 1d;
}
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) {
double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ?
Math.signum(costOfCarry) - 0.5 * lognormalVol :
(costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmp = coefD1 * rootT;
d2 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d2 = Double.isNaN(tmp) ? 0d : tmp;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
}
}
double norm = NORMAL.getPDF(d2);
double res = norm < SMALL ? 0d : discount * norm / strike / sigmaRootT;
return Double.isNaN(res) ? Double.POSITIVE_INFINITY : res;
}
//-------------------------------------------------------------------------
/**
* Computes the cross gamma.
*
* This is the sensitivity of the delta to the strike.
*
* $\frac{\partial^2 V}{\partial f \partial K}$.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the cross gamma
*/
public static double crossGamma(double spot, double strike, double timeToExpiry, double lognormalVol,
double interestRate, double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
if (-interestRate > LARGE) {
return costOfCarry > LARGE ? 0d : Double.NEGATIVE_INFINITY;
}
if (interestRate > LARGE) {
return 0d;
}
double discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry);
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
if (spot > LARGE * strike || spot < SMALL * strike || sigmaRootT > LARGE) {
return 0d;
}
double factor = Math.exp(costOfCarry * timeToExpiry);
if (Double.isNaN(factor)) {
factor = 1d; //ref value is returned
}
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) {
double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ?
Math.signum(costOfCarry) - 0.5 * lognormalVol :
(costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmp = coefD1 * rootT;
d2 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d2 = Double.isNaN(tmp) ? 0d : tmp;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
}
}
double norm = NORMAL.getPDF(d2);
double res = norm < SMALL ? 0d : -discount * norm / spot / sigmaRootT;
return Double.isNaN(res) ? Double.NEGATIVE_INFINITY : res;
}
//-------------------------------------------------------------------------
/**
* Computes the theta.
*
* This is the sensitivity of the present value to a change in time to maturity.
*
* $\-frac{\partial V}{\partial T}$.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @param isCall true for call, false for put
* @return theta
*/
public static double theta(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
if (Math.abs(interestRate) > LARGE) {
return 0d;
}
double discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry);
if (costOfCarry > LARGE) {
return isCall ? Double.NEGATIVE_INFINITY : 0d;
}
if (-costOfCarry > LARGE) {
double res = isCall ? 0d : (discount > SMALL ? strike * discount * interestRate : 0d);
return Double.isNaN(res) ? discount : res;
}
if (spot > LARGE * strike) {
double tmp = Math.exp((costOfCarry - interestRate) * timeToExpiry);
double res = isCall ? (tmp > SMALL ? -(costOfCarry - interestRate) * spot * tmp : 0d) : 0d;
return Double.isNaN(res) ? tmp : res;
}
if (LARGE * spot < strike) {
double res = isCall ? 0d : (discount > SMALL ? strike * discount * interestRate : 0d);
return Double.isNaN(res) ? discount : res;
}
if (spot > LARGE && strike > LARGE) {
return Double.POSITIVE_INFINITY;
}
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
int sign = isCall ? 1 : -1;
double d1 = 0d;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE) {
double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ?
Math.signum(costOfCarry) + 0.5 * lognormalVol :
(costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT;
d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1;
double coefD2 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ?
Math.signum(costOfCarry) - 0.5 * lognormalVol :
(costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT;
d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2;
} else {
if (sigmaRootT < SMALL) {
d1 = (Math.log(spot / strike) / rootT + costOfCarry * rootT) / lognormalVol;
d2 = d1;
} else {
double tmp = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ?
rootT :
((Math.abs(costOfCarry) < SMALL && rootT > LARGE) ? 1d / lognormalVol : costOfCarry / lognormalVol * rootT);
d1 = Math.log(spot / strike) / sigmaRootT + tmp + 0.5 * sigmaRootT;
d2 = d1 - sigmaRootT;
}
}
double norm = NORMAL.getPDF(d1);
double rescaledSpot = Math.exp((costOfCarry - interestRate) * timeToExpiry) * spot;
double rescaledStrike = discount * strike;
double normForSpot = NORMAL.getCDF(sign * d1);
double normForStrike = NORMAL.getCDF(sign * d2);
double spotTerm = normForSpot < SMALL ?
0d :
(Double.isNaN(rescaledSpot) ?
-sign * Math.signum((costOfCarry - interestRate)) * rescaledSpot :
-sign *
((costOfCarry - interestRate) * rescaledSpot * normForSpot));
double strikeTerm =
normForStrike < SMALL ?
0d :
(Double.isNaN(rescaledSpot) ?
sign * (-Math.signum(interestRate) * discount) :
sign *
(-interestRate * rescaledStrike * normForStrike));
double coef = rescaledSpot * lognormalVol / rootT;
if (Double.isNaN(coef)) {
coef = 1d; //ref value is returned
}
double dlTerm = norm < SMALL ? 0d : -0.5 * norm * coef;
double res = dlTerm + spotTerm + strikeTerm;
return Double.isNaN(res) ? 0d : res;
}
//-------------------------------------------------------------------------
/**
* Computes the charm.
*
* This is the minus of second order derivative of option value, once spot and once time to maturity.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate The interest rate
* @param costOfCarry The cost of carry
* @param isCall true for call, false for put
* @return the charm
*/
public static double charm(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
double coeff = Math.exp((costOfCarry - interestRate) * timeToExpiry);
if (coeff < SMALL) {
return 0d;
}
if (Double.isNaN(coeff)) {
coeff = 1d; //ref value is returned
}
int sign = isCall ? 1 : -1;
double d1 = 0d;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) {
double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) + 0.5 * lognormalVol :
(costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT;
d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1;
double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) - 0.5 * lognormalVol :
(costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT;
d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2;
} else {
if (sigmaRootT < SMALL) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d1 = Double.isNaN(tmp) ? 0d : tmp;
d2 = d1;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp;
d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp;
}
}
double cocMod = costOfCarry / sigmaRootT;
if (Double.isNaN(cocMod)) {
cocMod = 1d; //ref value is returned
}
double tmp = d2 / timeToExpiry;
tmp = Double.isNaN(tmp) ? (d2 >= 0d ? 1d : -1.) : tmp;
double coefPdf = cocMod - 0.5 * tmp;
double normPdf = NORMAL.getPDF(d1);
double normCdf = NORMAL.getCDF(sign * d1);
double first = normPdf < SMALL ? 0d : (Double.isNaN(coefPdf) ? 0d : normPdf * coefPdf);
double second = normCdf < SMALL ? 0d : (costOfCarry - interestRate) * normCdf;
double res = -coeff * (first + sign * second);
return Double.isNaN(res) ? 0d : res;
}
//-------------------------------------------------------------------------
/**
* Computes the dual charm.
*
* This is the minus of second order derivative of option value, once strike and once time to maturity.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost of carry
* @param isCall true for call, false for put
* @return the dual charm
*/
public static double dualCharm(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
double discount = Math.exp(-interestRate * timeToExpiry);
if (discount < SMALL) {
return 0d;
}
if (Double.isNaN(discount)) {
discount = 1d; //ref value is returned
}
int sign = isCall ? 1 : -1;
double d1 = 0d;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) {
double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) + 0.5 * lognormalVol :
(costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT;
d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1;
double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) - 0.5 * lognormalVol :
(costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT;
d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2;
} else {
if (sigmaRootT < SMALL) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d1 = Double.isNaN(tmp) ? 0d : tmp;
d2 = d1;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd = Double.isNaN(tmp) ?
((lognormalVol < LARGE && lognormalVol > SMALL) ?
sig / lognormalVol :
sig * rootT) :
tmp;
double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp;
d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp;
}
}
double coefPdf = 0d;
if (timeToExpiry < SMALL) {
coefPdf = (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) ?
1d / sigmaRootT :
Math.log(spot / strike) / sigmaRootT / timeToExpiry;
} else {
double cocMod = costOfCarry / sigmaRootT;
if (Double.isNaN(cocMod)) {
cocMod = 1d;
}
double tmp = d1 / timeToExpiry;
tmp = Double.isNaN(tmp) ? (d1 >= 0d ? 1d : -1.) : tmp;
coefPdf = cocMod - 0.5 * tmp;
}
double normPdf = NORMAL.getPDF(d2);
double normCdf = NORMAL.getCDF(sign * d2);
double first = normPdf < SMALL ? 0d : (Double.isNaN(coefPdf) ? 0d : normPdf * coefPdf);
double second = normCdf < SMALL ? 0d : interestRate * normCdf;
double res = discount * (first - sign * second);
return Double.isNaN(res) ? 0d : res;
}
//-------------------------------------------------------------------------
/**
* Computes the spot vega.
*
* This is the sensitivity of the option's spot price wrt the implied volatility
* (which is just the spot vega divided by the numeraire).
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the spot vega
*/
public static double vega(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double coef = 0d;
if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) ||
Math.abs(costOfCarry - interestRate) < SMALL) {
coef = 1d; //ref value is returned
} else {
double rate = costOfCarry - interestRate;
if (rate > LARGE) {
return costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY;
}
if (-rate > LARGE) {
return 0d;
}
coef = Math.exp(rate * timeToExpiry);
}
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
double factor = Math.exp(costOfCarry * timeToExpiry);
if (Double.isNaN(factor)) {
factor = 1d; //ref value is returned
}
double d1 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) {
double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ?
Math.signum(costOfCarry) + 0.5 * lognormalVol :
(costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmp = coefD1 * rootT;
d1 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL || spot > LARGE * strike || strike > LARGE * spot) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d1 = Double.isNaN(tmp) ? 0d : tmp;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
}
}
double norm = NORMAL.getPDF(d1);
double res = norm < SMALL ? 0d : coef * norm * spot * rootT;
return Double.isNaN(res) ? Double.POSITIVE_INFINITY : res;
}
//-------------------------------------------------------------------------
/**
* Computes the vanna.
*
* This is the second order derivative of the option value, once to the underlying spot and once to volatility.
*
* $\frac{\partial^2 FV}{\partial f \partial \sigma}$.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the spot vanna
*/
public static double vanna(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
double d1 = 0d;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) {
double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) + 0.5 * lognormalVol :
(costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT;
d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1;
double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) - 0.5 * lognormalVol :
(costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT;
d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2;
} else {
if (sigmaRootT < SMALL) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d1 = Double.isNaN(tmp) ? 0d : tmp;
d2 = d1;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp;
d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp;
}
}
double coef = 0d;
if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) ||
Math.abs(costOfCarry - interestRate) < SMALL) {
coef = 1d; //ref value is returned
} else {
double rate = costOfCarry - interestRate;
if (rate > LARGE) {
return costOfCarry > LARGE ? 0d : (d2 >= 0d ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY);
}
if (-rate > LARGE) {
return 0d;
}
coef = Math.exp(rate * timeToExpiry);
}
double norm = NORMAL.getPDF(d1);
double tmp = d2 * coef / lognormalVol;
if (Double.isNaN(tmp)) {
tmp = coef;
}
return norm < SMALL ? 0d : -norm * tmp;
}
//-------------------------------------------------------------------------
/**
* Computes the dual vanna.
*
* This is the second order derivative of the option value, once to the strike and once to volatility.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the spot dual vanna
*/
public static double dualVanna(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
double d1 = 0d;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) {
double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) + 0.5 * lognormalVol :
(costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT;
d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1;
double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ?
Math.signum(costOfCarry) - 0.5 * lognormalVol :
(costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT;
d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2;
} else {
if (sigmaRootT < SMALL) {
double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT;
double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol;
d1 = Double.isNaN(tmp) ? 0d : tmp;
d2 = d1;
} else {
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp;
d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp;
}
}
double coef = Math.exp(-interestRate * timeToExpiry);
if (coef < SMALL) {
return 0d;
}
if (Double.isNaN(coef)) {
coef = 1d; //ref value is returned
}
double norm = NORMAL.getPDF(d2);
double tmp = d1 * coef / lognormalVol;
if (Double.isNaN(tmp)) {
tmp = coef;
}
return norm < SMALL ? 0d : norm * tmp;
}
//-------------------------------------------------------------------------
/**
* Computes the vomma (aka volga).
*
* This is the second order derivative of the option spot price with respect to the implied volatility.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the spot vomma
*/
public static double vomma(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
if (spot > LARGE * strike || strike > LARGE * spot || rootT < SMALL) {
return 0d;
}
double d1 = 0d;
double d1d2Mod = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || rootT > LARGE) {
double costOvVol =
(Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) : costOfCarry / lognormalVol;
double coefD1 = costOvVol + 0.5 * lognormalVol;
double coefD1D2Mod = costOvVol * costOvVol / lognormalVol - 0.25 * lognormalVol;
double tmpD1 = coefD1 * rootT;
double tmpD1d2Mod = coefD1D2Mod * rootT * timeToExpiry;
d1 = Double.isNaN(tmpD1) ? 0d : tmpD1;
d1d2Mod = Double.isNaN(tmpD1d2Mod) ? 1d : tmpD1d2Mod;
} else {
if (lognormalVol > LARGE) {
d1 = 0.5 * sigmaRootT;
d1d2Mod = -0.25 * sigmaRootT * timeToExpiry;
} else {
if (lognormalVol < SMALL) {
double d1Tmp = (Math.log(spot / strike) / rootT + costOfCarry * rootT) / lognormalVol;
d1 = Double.isNaN(d1Tmp) ? 1d : d1Tmp;
d1d2Mod = d1 * d1 * rootT / lognormalVol;
} else {
double tmp = Math.log(spot / strike) / sigmaRootT + costOfCarry * rootT / lognormalVol;
d1 = tmp + 0.5 * sigmaRootT;
d1d2Mod = (tmp * tmp - 0.25 * sigmaRootT * sigmaRootT) * rootT / lognormalVol;
}
}
}
double coef = 0d;
if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) ||
Math.abs(costOfCarry - interestRate) < SMALL) {
coef = 1d; //ref value is returned
} else {
double rate = costOfCarry - interestRate;
if (rate > LARGE) {
return costOfCarry > LARGE ? 0d : (d1d2Mod >= 0d ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY);
}
if (-rate > LARGE) {
return 0d;
}
coef = Math.exp(rate * timeToExpiry);
}
double norm = NORMAL.getPDF(d1);
double tmp = d1d2Mod * spot * coef;
if (Double.isNaN(tmp)) {
tmp = coef;
}
return norm < SMALL ? 0d : norm * tmp;
}
//-------------------------------------------------------------------------
/**
* Computes the vega bleed.
*
* This is the second order derivative of the option spot price, once to the volatility and once to the time.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate the interest rate
* @param costOfCarry the cost-of-carry rate
* @return the spot vomma
*/
public static double vegaBleed(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
if (Double.isNaN(sigmaRootT)) {
sigmaRootT = 1d; //ref value is returned
}
if (spot > LARGE * strike || strike > LARGE * spot || rootT < SMALL) {
return 0d;
}
double d1 = 0d;
double extra = 0d;
if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || rootT > LARGE) {
double costOvVol =
(Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) : costOfCarry / lognormalVol;
double coefD1 = costOvVol + 0.5 * lognormalVol;
double tmpD1 = coefD1 * rootT;
d1 = Double.isNaN(tmpD1) ? 0d : tmpD1;
double coefExtra =
interestRate - 0.5 * costOfCarry + 0.5 * costOvVol * costOvVol + 0.125 * lognormalVol * lognormalVol;
double tmpExtra = Double.isNaN(coefExtra) ? rootT : coefExtra * rootT;
extra = Double.isNaN(tmpExtra) ? 1d - 0.5 / rootT : tmpExtra - 0.5 / rootT;
} else {
if (lognormalVol > LARGE) {
d1 = 0.5 * sigmaRootT;
extra = 0.125 * lognormalVol * sigmaRootT;
} else {
if (lognormalVol < SMALL) {
double resLogRatio = Math.log(spot / strike) / rootT;
double d1Tmp = (resLogRatio + costOfCarry * rootT) / lognormalVol;
d1 = Double.isNaN(d1Tmp) ? 1d : d1Tmp;
double tmpExtra =
(-0.5 * resLogRatio * resLogRatio / rootT + 0.5 * costOfCarry * costOfCarry * rootT) / lognormalVol / lognormalVol;
extra = Double.isNaN(tmpExtra) ? 1d : extra;
} else {
double resLogRatio = Math.log(spot / strike) / sigmaRootT;
double tmp = resLogRatio + costOfCarry * rootT / lognormalVol;
d1 = tmp + 0.5 * sigmaRootT;
double pDivTmp = interestRate - 0.5 * costOfCarry * (1d - costOfCarry / lognormalVol / lognormalVol);
double pDiv = Double.isNaN(pDivTmp) ? rootT : pDivTmp * rootT;
extra = pDiv - 0.5 / rootT - 0.5 * resLogRatio * resLogRatio / rootT + 0.125 * lognormalVol * sigmaRootT;
}
}
}
double coef = 0d;
if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) ||
Math.abs(costOfCarry - interestRate) < SMALL) {
coef = 1d; //ref value is returned
} else {
double rate = costOfCarry - interestRate;
if (rate > LARGE) {
return costOfCarry > LARGE ? 0d : (extra >= 0d ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY);
}
if (-rate > LARGE) {
return 0d;
}
coef = Math.exp(rate * timeToExpiry);
}
double norm = NORMAL.getPDF(d1);
double tmp = spot * coef * extra;
if (Double.isNaN(tmp)) {
tmp = coef;
}
return norm < SMALL ? 0d : tmp * norm;
}
//-------------------------------------------------------------------------
/**
* Computes the rho.
*
* This is the derivative of the option value with respect to the risk free interest rate .
* Note that costOfCarry = interestRate - dividend, which the derivative also acts on.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate The interest rate
* @param costOfCarry the cost of carry
* @param isCall true for call, false for put
* @return the rho
*/
public static double rho(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double discount = 0d;
if (-interestRate > LARGE) {
return isCall ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
}
if (interestRate > LARGE) {
return 0d;
}
discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry);
if (LARGE * spot < strike || timeToExpiry > LARGE) {
double res = isCall ? 0d : -discount * strike * timeToExpiry;
return Double.isNaN(res) ? -discount : res;
}
if (spot > LARGE * strike || timeToExpiry < SMALL) {
double res = isCall ? discount * strike * timeToExpiry : 0d;
return Double.isNaN(res) ? discount : res;
}
int sign = isCall ? 1 : -1;
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
double factor = Math.exp(costOfCarry * timeToExpiry);
double rescaledSpot = spot * factor;
double d2 = 0d;
if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) {
double coefD1 = (costOfCarry / lognormalVol - 0.5 * lognormalVol);
double tmp = coefD1 * rootT;
d2 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL) {
return isCall ?
(rescaledSpot > strike ? discount * strike * timeToExpiry : 0d) :
(rescaledSpot < strike ? -discount * strike * timeToExpiry : 0d);
}
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT;
}
double norm = NORMAL.getCDF(sign * d2);
double result = norm < SMALL ? 0d : sign * discount * strike * timeToExpiry * norm;
return Double.isNaN(result) ? sign * discount : result;
}
//-------------------------------------------------------------------------
/**
* Computes the carry rho.
*
* This is the derivative of the option value with respect to the cost of carry .
* Note that costOfCarry = interestRate - dividend, which the derivative also acts on.
*
* @param spot the spot value of the underlying
* @param strike the strike
* @param timeToExpiry the time to expiry
* @param lognormalVol the log-normal volatility
* @param interestRate The interest rate
* @param costOfCarry The cost of carry
* @param isCall true for call, false for put
* @return the carry rho
*/
public static double carryRho(
double spot,
double strike,
double timeToExpiry,
double lognormalVol,
double interestRate,
double costOfCarry,
boolean isCall) {
ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot);
ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike);
ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry);
ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol);
ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN");
ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN");
double coef = 0d;
if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) ||
Math.abs(costOfCarry - interestRate) < SMALL) {
coef = 1d; //ref value is returned
} else {
double rate = costOfCarry - interestRate;
if (rate > LARGE) {
return isCall ? Double.POSITIVE_INFINITY : (costOfCarry > LARGE ? 0d : Double.NEGATIVE_INFINITY);
}
if (-rate > LARGE) {
return 0d;
}
coef = Math.exp(rate * timeToExpiry);
}
if (spot > LARGE * strike || timeToExpiry > LARGE) {
double res = isCall ? coef * spot * timeToExpiry : 0d;
return Double.isNaN(res) ? coef : res;
}
if (LARGE * spot < strike || timeToExpiry < SMALL) {
double res = isCall ? 0d : -coef * spot * timeToExpiry;
return Double.isNaN(res) ? -coef : res;
}
int sign = isCall ? 1 : -1;
double rootT = Math.sqrt(timeToExpiry);
double sigmaRootT = lognormalVol * rootT;
double factor = Math.exp(costOfCarry * timeToExpiry);
double rescaledSpot = spot * factor;
double d1 = 0d;
if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) {
double coefD1 = (costOfCarry / lognormalVol + 0.5 * lognormalVol);
double tmp = coefD1 * rootT;
d1 = Double.isNaN(tmp) ? 0d : tmp;
} else {
if (sigmaRootT < SMALL) {
return isCall ?
(rescaledSpot > strike ? coef * timeToExpiry * spot : 0d) :
(rescaledSpot < strike ?
-coef *
timeToExpiry * spot :
0d);
}
double tmp = costOfCarry * rootT / lognormalVol;
double sig = (costOfCarry >= 0d) ? 1d : -1d;
double scnd =
Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp;
d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT;
}
double norm = NORMAL.getCDF(sign * d1);
double result = norm < SMALL ? 0d : sign * coef * timeToExpiry * spot * norm;
return Double.isNaN(result) ? sign * coef : result;
}
}