All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.pricer.impl.option.BlackScholesFormulaRepository Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.pricer.impl.option;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.impl.statistics.distribution.NormalDistribution;
import com.opengamma.strata.math.impl.statistics.distribution.ProbabilityDistribution;

/**
 * The primary repository for Black-Scholes formulas, including the price and greeks.
 * 

* When the formula involves ambiguous quantities, a reference value (rather than NaN) is returned * Note that the formulas are expressed in terms of interest rate (r) and cost of carry (b), * then d_1 and d_2 are d_{1,2} = \frac{\ln(S/X) + (b \pm \sigma^2 ) T}{\sigma \sqrt{T}}. */ public final class BlackScholesFormulaRepository { private static final ProbabilityDistribution NORMAL = new NormalDistribution(0, 1); private static final double SMALL = 1e-13; private static final double LARGE = 1e13; // restricted constructor private BlackScholesFormulaRepository() { } //------------------------------------------------------------------------- /** * Computes the spot price. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @param isCall true for call, false for put * @return the spot price */ public static double price( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); if (interestRate > LARGE) { return 0d; } if (-interestRate > LARGE) { return Double.POSITIVE_INFINITY; } double discount = Math.abs(interestRate) < SMALL ? 1d : Math.exp(-interestRate * timeToExpiry); if (costOfCarry > LARGE) { return isCall ? Double.POSITIVE_INFINITY : 0d; } if (-costOfCarry > LARGE) { double res = isCall ? 0d : (discount > SMALL ? strike * discount : 0d); return Double.isNaN(res) ? discount : res; } double factor = Math.exp(costOfCarry * timeToExpiry); if (spot > LARGE * strike) { double tmp = Math.exp((costOfCarry - interestRate) * timeToExpiry); return isCall ? (tmp > SMALL ? spot * tmp : 0d) : 0d; } if (LARGE * spot < strike) { return (isCall || discount < SMALL) ? 0d : strike * discount; } if (spot > LARGE && strike > LARGE) { double tmp = Math.exp((costOfCarry - interestRate) * timeToExpiry); return isCall ? (tmp > SMALL ? spot * tmp : 0d) : (discount > SMALL ? strike * discount : 0d); } double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } int sign = isCall ? 1 : -1; double rescaledSpot = factor * spot; if (sigmaRootT < SMALL) { double res = isCall ? (rescaledSpot > strike ? discount * (rescaledSpot - strike) : 0d) : (rescaledSpot < strike ? discount * (strike - rescaledSpot) : 0d); return Double.isNaN(res) ? sign * (spot - discount * strike) : res; } double d1 = 0d; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE) { double coefD1 = (costOfCarry / lognormalVol + 0.5 * lognormalVol); double coefD2 = (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmpD1 = coefD1 * rootT; double tmpD2 = coefD2 * rootT; d1 = Double.isNaN(tmpD1) ? 0d : tmpD1; d2 = Double.isNaN(tmpD2) ? 0d : tmpD2; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; d2 = d1 - sigmaRootT; } double res = sign * discount * (rescaledSpot * NORMAL.getCDF(sign * d1) - strike * NORMAL.getCDF(sign * d2)); return Double.isNaN(res) ? 0d : Math.max(res, 0d); } //------------------------------------------------------------------------- /** * Computes the spot delta. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @param isCall true for call, false for put * @return the spot delta */ public static double delta( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double coef = 0d; if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) || Math.abs(costOfCarry - interestRate) < SMALL) { coef = 1d; //ref value is returned } else { double rate = costOfCarry - interestRate; if (rate > LARGE) { return isCall ? Double.POSITIVE_INFINITY : (costOfCarry > LARGE ? 0d : Double.NEGATIVE_INFINITY); } if (-rate > LARGE) { return 0d; } coef = Math.exp(rate * timeToExpiry); } if (spot > LARGE * strike) { return isCall ? coef : 0d; } if (spot < SMALL * strike) { return isCall ? 0d : -coef; } int sign = isCall ? 1 : -1; double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } double factor = Math.exp(costOfCarry * timeToExpiry); if (Double.isNaN(factor)) { factor = 1d; //ref value is returned } double rescaledSpot = spot * factor; double d1 = 0d; if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) { double coefD1 = (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmp = coefD1 * rootT; d1 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL) { return isCall ? (rescaledSpot > strike ? coef : 0d) : (rescaledSpot < strike ? -coef : 0d); } double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; } double norm = NORMAL.getCDF(sign * d1); return norm < SMALL ? 0d : sign * coef * norm; } //------------------------------------------------------------------------- /** * Computes the strike for the delta. *

* Note that the parameter range is more restricted for this method because the * strike is undetermined for infinite/zero valued parameters. * * @param spot the spot value of the underlying * @param spotDelta The spot delta * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @param isCall true for call, false for put * @return the strike */ public static double strikeForDelta( double spot, double spotDelta, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot > 0d, "non-positive/NaN spot; have {}", spot); ArgChecker.isTrue(timeToExpiry > 0d, "non-positive/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol > 0d, "non-positive/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); ArgChecker.isFalse(Double.isInfinite(spot), "spot is infinite"); ArgChecker.isFalse(Double.isInfinite(spotDelta), "spotDelta is infinite"); ArgChecker.isFalse(Double.isInfinite(timeToExpiry), "timeToExpiry is infinite"); ArgChecker.isFalse(Double.isInfinite(lognormalVol), "lognormalVol is infinite"); ArgChecker.isFalse(Double.isInfinite(interestRate), "interestRate is infinite"); ArgChecker.isFalse(Double.isInfinite(costOfCarry), "costOfCarry is infinite"); double rescaledDelta = spotDelta * Math.exp((-costOfCarry + interestRate) * timeToExpiry); ArgChecker.isTrue((isCall && rescaledDelta > 0d && rescaledDelta < 1.) || (!isCall && spotDelta < 0d && rescaledDelta > -1.), "delta/Math.exp((costOfCarry - interestRate) * timeToExpiry) out of range, ", rescaledDelta); double sigmaRootT = lognormalVol * Math.sqrt(timeToExpiry); double rescaledSpot = spot * Math.exp(costOfCarry * timeToExpiry); int sign = isCall ? 1 : -1; double d1 = sign * NORMAL.getInverseCDF(sign * rescaledDelta); return rescaledSpot * Math.exp(-d1 * sigmaRootT + 0.5 * sigmaRootT * sigmaRootT); } //------------------------------------------------------------------------- /** * Computes the dual delta. *

* This is the first derivative of option price with respect to strike. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @param isCall true for call, false for put * @return the dual delta */ public static double dualDelta( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double discount = 0d; if (-interestRate > LARGE) { return isCall ? Double.NEGATIVE_INFINITY : (costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY); } if (interestRate > LARGE) { return 0d; } discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry); if (spot > LARGE * strike) { return isCall ? -discount : 0d; } if (spot < SMALL * strike) { return isCall ? 0d : discount; } int sign = isCall ? 1 : -1; double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } double factor = Math.exp(costOfCarry * timeToExpiry); if (Double.isNaN(factor)) { factor = 1d; //ref value is returned } double rescaledSpot = spot * factor; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) { double coefD2 = (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmp = coefD2 * rootT; d2 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL) { return isCall ? (rescaledSpot > strike ? -discount : 0d) : (rescaledSpot < strike ? discount : 0d); } double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; } double norm = NORMAL.getCDF(sign * d2); return norm < SMALL ? 0d : -sign * discount * norm; } //------------------------------------------------------------------------- /** * Computes the spot gamma. *

* This is the second order sensitivity of the spot option value to the spot. *

* $\frac{\partial^2 FV}{\partial^2 f}$. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the spot gamma */ public static double gamma( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double coef = 0d; if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) || Math.abs(costOfCarry - interestRate) < SMALL) { coef = 1d; //ref value is returned } else { double rate = costOfCarry - interestRate; if (rate > LARGE) { return costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY; } if (-rate > LARGE) { return 0d; } coef = Math.exp(rate * timeToExpiry); } double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } if (spot > LARGE * strike || spot < SMALL * strike || sigmaRootT > LARGE) { return 0d; } double factor = Math.exp(costOfCarry * timeToExpiry); if (Double.isNaN(factor)) { factor = 1d; //ref value is returned } double d1 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) { double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) + 0.5 * lognormalVol : (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmp = coefD1 * rootT; d1 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d1 = Double.isNaN(tmp) ? 0d : tmp; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; } } double norm = NORMAL.getPDF(d1); double res = norm < SMALL ? 0d : coef * norm / spot / sigmaRootT; return Double.isNaN(res) ? Double.POSITIVE_INFINITY : res; } //------------------------------------------------------------------------- /** * Computes the dual gamma. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the dual gamma */ public static double dualGamma( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); if (-interestRate > LARGE) { return costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY; } if (interestRate > LARGE) { return 0d; } double discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } if (spot > LARGE * strike || spot < SMALL * strike || sigmaRootT > LARGE) { return 0d; } double factor = Math.exp(costOfCarry * timeToExpiry); if (Double.isNaN(factor)) { factor = 1d; } double d2 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) { double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) - 0.5 * lognormalVol : (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmp = coefD1 * rootT; d2 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d2 = Double.isNaN(tmp) ? 0d : tmp; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; } } double norm = NORMAL.getPDF(d2); double res = norm < SMALL ? 0d : discount * norm / strike / sigmaRootT; return Double.isNaN(res) ? Double.POSITIVE_INFINITY : res; } //------------------------------------------------------------------------- /** * Computes the cross gamma. *

* This is the sensitivity of the delta to the strike. *

* $\frac{\partial^2 V}{\partial f \partial K}$. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the cross gamma */ public static double crossGamma(double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); if (-interestRate > LARGE) { return costOfCarry > LARGE ? 0d : Double.NEGATIVE_INFINITY; } if (interestRate > LARGE) { return 0d; } double discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } if (spot > LARGE * strike || spot < SMALL * strike || sigmaRootT > LARGE) { return 0d; } double factor = Math.exp(costOfCarry * timeToExpiry); if (Double.isNaN(factor)) { factor = 1d; //ref value is returned } double d2 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) { double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) - 0.5 * lognormalVol : (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmp = coefD1 * rootT; d2 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d2 = Double.isNaN(tmp) ? 0d : tmp; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; } } double norm = NORMAL.getPDF(d2); double res = norm < SMALL ? 0d : -discount * norm / spot / sigmaRootT; return Double.isNaN(res) ? Double.NEGATIVE_INFINITY : res; } //------------------------------------------------------------------------- /** * Computes the theta. *

* This is the sensitivity of the present value to a change in time to maturity. *

* $\-frac{\partial V}{\partial T}$. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @param isCall true for call, false for put * @return theta */ public static double theta( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); if (Math.abs(interestRate) > LARGE) { return 0d; } double discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry); if (costOfCarry > LARGE) { return isCall ? Double.NEGATIVE_INFINITY : 0d; } if (-costOfCarry > LARGE) { double res = isCall ? 0d : (discount > SMALL ? strike * discount * interestRate : 0d); return Double.isNaN(res) ? discount : res; } if (spot > LARGE * strike) { double tmp = Math.exp((costOfCarry - interestRate) * timeToExpiry); double res = isCall ? (tmp > SMALL ? -(costOfCarry - interestRate) * spot * tmp : 0d) : 0d; return Double.isNaN(res) ? tmp : res; } if (LARGE * spot < strike) { double res = isCall ? 0d : (discount > SMALL ? strike * discount * interestRate : 0d); return Double.isNaN(res) ? discount : res; } if (spot > LARGE && strike > LARGE) { return Double.POSITIVE_INFINITY; } double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } int sign = isCall ? 1 : -1; double d1 = 0d; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE) { double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) + 0.5 * lognormalVol : (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT; d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1; double coefD2 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) - 0.5 * lognormalVol : (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT; d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2; } else { if (sigmaRootT < SMALL) { d1 = (Math.log(spot / strike) / rootT + costOfCarry * rootT) / lognormalVol; d2 = d1; } else { double tmp = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? rootT : ((Math.abs(costOfCarry) < SMALL && rootT > LARGE) ? 1d / lognormalVol : costOfCarry / lognormalVol * rootT); d1 = Math.log(spot / strike) / sigmaRootT + tmp + 0.5 * sigmaRootT; d2 = d1 - sigmaRootT; } } double norm = NORMAL.getPDF(d1); double rescaledSpot = Math.exp((costOfCarry - interestRate) * timeToExpiry) * spot; double rescaledStrike = discount * strike; double normForSpot = NORMAL.getCDF(sign * d1); double normForStrike = NORMAL.getCDF(sign * d2); double spotTerm = normForSpot < SMALL ? 0d : (Double.isNaN(rescaledSpot) ? -sign * Math.signum((costOfCarry - interestRate)) * rescaledSpot : -sign * ((costOfCarry - interestRate) * rescaledSpot * normForSpot)); double strikeTerm = normForStrike < SMALL ? 0d : (Double.isNaN(rescaledSpot) ? sign * (-Math.signum(interestRate) * discount) : sign * (-interestRate * rescaledStrike * normForStrike)); double coef = rescaledSpot * lognormalVol / rootT; if (Double.isNaN(coef)) { coef = 1d; //ref value is returned } double dlTerm = norm < SMALL ? 0d : -0.5 * norm * coef; double res = dlTerm + spotTerm + strikeTerm; return Double.isNaN(res) ? 0d : res; } //------------------------------------------------------------------------- /** * Computes the charm. *

* This is the minus of second order derivative of option value, once spot and once time to maturity. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate The interest rate * @param costOfCarry The cost of carry * @param isCall true for call, false for put * @return the charm */ public static double charm( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } double coeff = Math.exp((costOfCarry - interestRate) * timeToExpiry); if (coeff < SMALL) { return 0d; } if (Double.isNaN(coeff)) { coeff = 1d; //ref value is returned } int sign = isCall ? 1 : -1; double d1 = 0d; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) { double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) + 0.5 * lognormalVol : (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT; d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1; double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) - 0.5 * lognormalVol : (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT; d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2; } else { if (sigmaRootT < SMALL) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d1 = Double.isNaN(tmp) ? 0d : tmp; d2 = d1; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp; d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp; } } double cocMod = costOfCarry / sigmaRootT; if (Double.isNaN(cocMod)) { cocMod = 1d; //ref value is returned } double tmp = d2 / timeToExpiry; tmp = Double.isNaN(tmp) ? (d2 >= 0d ? 1d : -1.) : tmp; double coefPdf = cocMod - 0.5 * tmp; double normPdf = NORMAL.getPDF(d1); double normCdf = NORMAL.getCDF(sign * d1); double first = normPdf < SMALL ? 0d : (Double.isNaN(coefPdf) ? 0d : normPdf * coefPdf); double second = normCdf < SMALL ? 0d : (costOfCarry - interestRate) * normCdf; double res = -coeff * (first + sign * second); return Double.isNaN(res) ? 0d : res; } //------------------------------------------------------------------------- /** * Computes the dual charm. *

* This is the minus of second order derivative of option value, once strike and once time to maturity. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost of carry * @param isCall true for call, false for put * @return the dual charm */ public static double dualCharm( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } double discount = Math.exp(-interestRate * timeToExpiry); if (discount < SMALL) { return 0d; } if (Double.isNaN(discount)) { discount = 1d; //ref value is returned } int sign = isCall ? 1 : -1; double d1 = 0d; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) { double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) + 0.5 * lognormalVol : (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT; d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1; double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) - 0.5 * lognormalVol : (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT; d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2; } else { if (sigmaRootT < SMALL) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d1 = Double.isNaN(tmp) ? 0d : tmp; d2 = d1; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp; d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp; } } double coefPdf = 0d; if (timeToExpiry < SMALL) { coefPdf = (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE)) ? 1d / sigmaRootT : Math.log(spot / strike) / sigmaRootT / timeToExpiry; } else { double cocMod = costOfCarry / sigmaRootT; if (Double.isNaN(cocMod)) { cocMod = 1d; } double tmp = d1 / timeToExpiry; tmp = Double.isNaN(tmp) ? (d1 >= 0d ? 1d : -1.) : tmp; coefPdf = cocMod - 0.5 * tmp; } double normPdf = NORMAL.getPDF(d2); double normCdf = NORMAL.getCDF(sign * d2); double first = normPdf < SMALL ? 0d : (Double.isNaN(coefPdf) ? 0d : normPdf * coefPdf); double second = normCdf < SMALL ? 0d : interestRate * normCdf; double res = discount * (first - sign * second); return Double.isNaN(res) ? 0d : res; } //------------------------------------------------------------------------- /** * Computes the spot vega. *

* This is the sensitivity of the option's spot price wrt the implied volatility * (which is just the spot vega divided by the numeraire). * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the spot vega */ public static double vega( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double coef = 0d; if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) || Math.abs(costOfCarry - interestRate) < SMALL) { coef = 1d; //ref value is returned } else { double rate = costOfCarry - interestRate; if (rate > LARGE) { return costOfCarry > LARGE ? 0d : Double.POSITIVE_INFINITY; } if (-rate > LARGE) { return 0d; } coef = Math.exp(rate * timeToExpiry); } double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } double factor = Math.exp(costOfCarry * timeToExpiry); if (Double.isNaN(factor)) { factor = 1d; //ref value is returned } double d1 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) { double coefD1 = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) + 0.5 * lognormalVol : (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmp = coefD1 * rootT; d1 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL || spot > LARGE * strike || strike > LARGE * spot) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d1 = Double.isNaN(tmp) ? 0d : tmp; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; } } double norm = NORMAL.getPDF(d1); double res = norm < SMALL ? 0d : coef * norm * spot * rootT; return Double.isNaN(res) ? Double.POSITIVE_INFINITY : res; } //------------------------------------------------------------------------- /** * Computes the vanna. *

* This is the second order derivative of the option value, once to the underlying spot and once to volatility. *

* $\frac{\partial^2 FV}{\partial f \partial \sigma}$. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the spot vanna */ public static double vanna( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } double d1 = 0d; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) { double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) + 0.5 * lognormalVol : (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT; d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1; double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) - 0.5 * lognormalVol : (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT; d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2; } else { if (sigmaRootT < SMALL) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d1 = Double.isNaN(tmp) ? 0d : tmp; d2 = d1; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp; d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp; } } double coef = 0d; if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) || Math.abs(costOfCarry - interestRate) < SMALL) { coef = 1d; //ref value is returned } else { double rate = costOfCarry - interestRate; if (rate > LARGE) { return costOfCarry > LARGE ? 0d : (d2 >= 0d ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY); } if (-rate > LARGE) { return 0d; } coef = Math.exp(rate * timeToExpiry); } double norm = NORMAL.getPDF(d1); double tmp = d2 * coef / lognormalVol; if (Double.isNaN(tmp)) { tmp = coef; } return norm < SMALL ? 0d : -norm * tmp; } //------------------------------------------------------------------------- /** * Computes the dual vanna. *

* This is the second order derivative of the option value, once to the strike and once to volatility. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the spot dual vanna */ public static double dualVanna( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } double d1 = 0d; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || sigmaRootT > LARGE) { double coefD1 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) + 0.5 * lognormalVol : (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmpD1 = Math.abs(coefD1) < SMALL ? 0d : coefD1 * rootT; d1 = Double.isNaN(tmpD1) ? Math.signum(coefD1) : tmpD1; double coefD2 = Double.isNaN(Math.abs(costOfCarry) / lognormalVol) ? Math.signum(costOfCarry) - 0.5 * lognormalVol : (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmpD2 = Math.abs(coefD2) < SMALL ? 0d : coefD2 * rootT; d2 = Double.isNaN(tmpD2) ? Math.signum(coefD2) : tmpD2; } else { if (sigmaRootT < SMALL) { double scnd = (Math.abs(costOfCarry) > LARGE && rootT < SMALL) ? Math.signum(costOfCarry) : costOfCarry * rootT; double tmp = (Math.log(spot / strike) / rootT + scnd) / lognormalVol; d1 = Double.isNaN(tmp) ? 0d : tmp; d2 = d1; } else { double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; double d1Tmp = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; double d2Tmp = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; d1 = Double.isNaN(d1Tmp) ? 0d : d1Tmp; d2 = Double.isNaN(d2Tmp) ? 0d : d2Tmp; } } double coef = Math.exp(-interestRate * timeToExpiry); if (coef < SMALL) { return 0d; } if (Double.isNaN(coef)) { coef = 1d; //ref value is returned } double norm = NORMAL.getPDF(d2); double tmp = d1 * coef / lognormalVol; if (Double.isNaN(tmp)) { tmp = coef; } return norm < SMALL ? 0d : norm * tmp; } //------------------------------------------------------------------------- /** * Computes the vomma (aka volga). *

* This is the second order derivative of the option spot price with respect to the implied volatility. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the spot vomma */ public static double vomma( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } if (spot > LARGE * strike || strike > LARGE * spot || rootT < SMALL) { return 0d; } double d1 = 0d; double d1d2Mod = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || rootT > LARGE) { double costOvVol = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) : costOfCarry / lognormalVol; double coefD1 = costOvVol + 0.5 * lognormalVol; double coefD1D2Mod = costOvVol * costOvVol / lognormalVol - 0.25 * lognormalVol; double tmpD1 = coefD1 * rootT; double tmpD1d2Mod = coefD1D2Mod * rootT * timeToExpiry; d1 = Double.isNaN(tmpD1) ? 0d : tmpD1; d1d2Mod = Double.isNaN(tmpD1d2Mod) ? 1d : tmpD1d2Mod; } else { if (lognormalVol > LARGE) { d1 = 0.5 * sigmaRootT; d1d2Mod = -0.25 * sigmaRootT * timeToExpiry; } else { if (lognormalVol < SMALL) { double d1Tmp = (Math.log(spot / strike) / rootT + costOfCarry * rootT) / lognormalVol; d1 = Double.isNaN(d1Tmp) ? 1d : d1Tmp; d1d2Mod = d1 * d1 * rootT / lognormalVol; } else { double tmp = Math.log(spot / strike) / sigmaRootT + costOfCarry * rootT / lognormalVol; d1 = tmp + 0.5 * sigmaRootT; d1d2Mod = (tmp * tmp - 0.25 * sigmaRootT * sigmaRootT) * rootT / lognormalVol; } } } double coef = 0d; if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) || Math.abs(costOfCarry - interestRate) < SMALL) { coef = 1d; //ref value is returned } else { double rate = costOfCarry - interestRate; if (rate > LARGE) { return costOfCarry > LARGE ? 0d : (d1d2Mod >= 0d ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY); } if (-rate > LARGE) { return 0d; } coef = Math.exp(rate * timeToExpiry); } double norm = NORMAL.getPDF(d1); double tmp = d1d2Mod * spot * coef; if (Double.isNaN(tmp)) { tmp = coef; } return norm < SMALL ? 0d : norm * tmp; } //------------------------------------------------------------------------- /** * Computes the vega bleed. *

* This is the second order derivative of the option spot price, once to the volatility and once to the time. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate the interest rate * @param costOfCarry the cost-of-carry rate * @return the spot vomma */ public static double vegaBleed( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; if (Double.isNaN(sigmaRootT)) { sigmaRootT = 1d; //ref value is returned } if (spot > LARGE * strike || strike > LARGE * spot || rootT < SMALL) { return 0d; } double d1 = 0d; double extra = 0d; if (Math.abs(spot - strike) < SMALL || (spot > LARGE && strike > LARGE) || rootT > LARGE) { double costOvVol = (Math.abs(costOfCarry) < SMALL && lognormalVol < SMALL) ? Math.signum(costOfCarry) : costOfCarry / lognormalVol; double coefD1 = costOvVol + 0.5 * lognormalVol; double tmpD1 = coefD1 * rootT; d1 = Double.isNaN(tmpD1) ? 0d : tmpD1; double coefExtra = interestRate - 0.5 * costOfCarry + 0.5 * costOvVol * costOvVol + 0.125 * lognormalVol * lognormalVol; double tmpExtra = Double.isNaN(coefExtra) ? rootT : coefExtra * rootT; extra = Double.isNaN(tmpExtra) ? 1d - 0.5 / rootT : tmpExtra - 0.5 / rootT; } else { if (lognormalVol > LARGE) { d1 = 0.5 * sigmaRootT; extra = 0.125 * lognormalVol * sigmaRootT; } else { if (lognormalVol < SMALL) { double resLogRatio = Math.log(spot / strike) / rootT; double d1Tmp = (resLogRatio + costOfCarry * rootT) / lognormalVol; d1 = Double.isNaN(d1Tmp) ? 1d : d1Tmp; double tmpExtra = (-0.5 * resLogRatio * resLogRatio / rootT + 0.5 * costOfCarry * costOfCarry * rootT) / lognormalVol / lognormalVol; extra = Double.isNaN(tmpExtra) ? 1d : extra; } else { double resLogRatio = Math.log(spot / strike) / sigmaRootT; double tmp = resLogRatio + costOfCarry * rootT / lognormalVol; d1 = tmp + 0.5 * sigmaRootT; double pDivTmp = interestRate - 0.5 * costOfCarry * (1d - costOfCarry / lognormalVol / lognormalVol); double pDiv = Double.isNaN(pDivTmp) ? rootT : pDivTmp * rootT; extra = pDiv - 0.5 / rootT - 0.5 * resLogRatio * resLogRatio / rootT + 0.125 * lognormalVol * sigmaRootT; } } } double coef = 0d; if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) || Math.abs(costOfCarry - interestRate) < SMALL) { coef = 1d; //ref value is returned } else { double rate = costOfCarry - interestRate; if (rate > LARGE) { return costOfCarry > LARGE ? 0d : (extra >= 0d ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY); } if (-rate > LARGE) { return 0d; } coef = Math.exp(rate * timeToExpiry); } double norm = NORMAL.getPDF(d1); double tmp = spot * coef * extra; if (Double.isNaN(tmp)) { tmp = coef; } return norm < SMALL ? 0d : tmp * norm; } //------------------------------------------------------------------------- /** * Computes the rho. *

* This is the derivative of the option value with respect to the risk free interest rate . * Note that costOfCarry = interestRate - dividend, which the derivative also acts on. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate The interest rate * @param costOfCarry the cost of carry * @param isCall true for call, false for put * @return the rho */ public static double rho( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double discount = 0d; if (-interestRate > LARGE) { return isCall ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY; } if (interestRate > LARGE) { return 0d; } discount = (Math.abs(interestRate) < SMALL && timeToExpiry > LARGE) ? 1d : Math.exp(-interestRate * timeToExpiry); if (LARGE * spot < strike || timeToExpiry > LARGE) { double res = isCall ? 0d : -discount * strike * timeToExpiry; return Double.isNaN(res) ? -discount : res; } if (spot > LARGE * strike || timeToExpiry < SMALL) { double res = isCall ? discount * strike * timeToExpiry : 0d; return Double.isNaN(res) ? discount : res; } int sign = isCall ? 1 : -1; double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; double factor = Math.exp(costOfCarry * timeToExpiry); double rescaledSpot = spot * factor; double d2 = 0d; if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) { double coefD1 = (costOfCarry / lognormalVol - 0.5 * lognormalVol); double tmp = coefD1 * rootT; d2 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL) { return isCall ? (rescaledSpot > strike ? discount * strike * timeToExpiry : 0d) : (rescaledSpot < strike ? -discount * strike * timeToExpiry : 0d); } double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d2 = Math.log(spot / strike) / sigmaRootT + scnd - 0.5 * sigmaRootT; } double norm = NORMAL.getCDF(sign * d2); double result = norm < SMALL ? 0d : sign * discount * strike * timeToExpiry * norm; return Double.isNaN(result) ? sign * discount : result; } //------------------------------------------------------------------------- /** * Computes the carry rho. *

* This is the derivative of the option value with respect to the cost of carry . * Note that costOfCarry = interestRate - dividend, which the derivative also acts on. * * @param spot the spot value of the underlying * @param strike the strike * @param timeToExpiry the time to expiry * @param lognormalVol the log-normal volatility * @param interestRate The interest rate * @param costOfCarry The cost of carry * @param isCall true for call, false for put * @return the carry rho */ public static double carryRho( double spot, double strike, double timeToExpiry, double lognormalVol, double interestRate, double costOfCarry, boolean isCall) { ArgChecker.isTrue(spot >= 0d, "negative/NaN spot; have {}", spot); ArgChecker.isTrue(strike >= 0d, "negative/NaN strike; have {}", strike); ArgChecker.isTrue(timeToExpiry >= 0d, "negative/NaN timeToExpiry; have {}", timeToExpiry); ArgChecker.isTrue(lognormalVol >= 0d, "negative/NaN lognormalVol; have {}", lognormalVol); ArgChecker.isFalse(Double.isNaN(interestRate), "interestRate is NaN"); ArgChecker.isFalse(Double.isNaN(costOfCarry), "costOfCarry is NaN"); double coef = 0d; if ((interestRate > LARGE && costOfCarry > LARGE) || (-interestRate > LARGE && -costOfCarry > LARGE) || Math.abs(costOfCarry - interestRate) < SMALL) { coef = 1d; //ref value is returned } else { double rate = costOfCarry - interestRate; if (rate > LARGE) { return isCall ? Double.POSITIVE_INFINITY : (costOfCarry > LARGE ? 0d : Double.NEGATIVE_INFINITY); } if (-rate > LARGE) { return 0d; } coef = Math.exp(rate * timeToExpiry); } if (spot > LARGE * strike || timeToExpiry > LARGE) { double res = isCall ? coef * spot * timeToExpiry : 0d; return Double.isNaN(res) ? coef : res; } if (LARGE * spot < strike || timeToExpiry < SMALL) { double res = isCall ? 0d : -coef * spot * timeToExpiry; return Double.isNaN(res) ? -coef : res; } int sign = isCall ? 1 : -1; double rootT = Math.sqrt(timeToExpiry); double sigmaRootT = lognormalVol * rootT; double factor = Math.exp(costOfCarry * timeToExpiry); double rescaledSpot = spot * factor; double d1 = 0d; if (Math.abs(spot - strike) < SMALL || sigmaRootT > LARGE || (spot > LARGE && strike > LARGE)) { double coefD1 = (costOfCarry / lognormalVol + 0.5 * lognormalVol); double tmp = coefD1 * rootT; d1 = Double.isNaN(tmp) ? 0d : tmp; } else { if (sigmaRootT < SMALL) { return isCall ? (rescaledSpot > strike ? coef * timeToExpiry * spot : 0d) : (rescaledSpot < strike ? -coef * timeToExpiry * spot : 0d); } double tmp = costOfCarry * rootT / lognormalVol; double sig = (costOfCarry >= 0d) ? 1d : -1d; double scnd = Double.isNaN(tmp) ? ((lognormalVol < LARGE && lognormalVol > SMALL) ? sig / lognormalVol : sig * rootT) : tmp; d1 = Math.log(spot / strike) / sigmaRootT + scnd + 0.5 * sigmaRootT; } double norm = NORMAL.getCDF(sign * d1); double result = norm < SMALL ? 0d : sign * coef * timeToExpiry * spot * norm; return Double.isNaN(result) ? sign * coef : result; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy