All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.pricer.impl.rate.model.HullWhiteOneFactorPiecewiseConstantInterestRateModel Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (C) 2015 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.pricer.impl.rate.model;

import java.io.Serializable;
import java.lang.invoke.MethodHandles;
import java.util.Arrays;
import java.util.function.Function;

import org.joda.beans.ImmutableBean;
import org.joda.beans.MetaBean;
import org.joda.beans.TypedMetaBean;
import org.joda.beans.gen.BeanDefinition;
import org.joda.beans.impl.light.LightMetaBean;

import com.opengamma.strata.basics.value.ValueDerivatives;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.collect.tuple.Pair;
import com.opengamma.strata.math.impl.rootfinding.BracketRoot;
import com.opengamma.strata.math.impl.rootfinding.RidderSingleRootFinder;
import com.opengamma.strata.pricer.model.HullWhiteOneFactorPiecewiseConstantParameters;

/**
 * Methods related to the Hull-White one factor (extended Vasicek) model with piecewise constant volatility.
 */
@BeanDefinition(style = "light")
public final class HullWhiteOneFactorPiecewiseConstantInterestRateModel implements ImmutableBean, Serializable {

  /**
   * Default instance.
   */
  public static final HullWhiteOneFactorPiecewiseConstantInterestRateModel DEFAULT =
      new HullWhiteOneFactorPiecewiseConstantInterestRateModel();

  //-------------------------------------------------------------------------
  /**
   * Calculates the future convexity factor used in future pricing.
   * 

* The factor is called gamma in the reference: * Henrard, M. "The Irony in the derivatives discounting Part II: the crisis", Wilmott Journal, 2010, 2, 301-316 * * @param data the Hull-White model parameters * @param t0 the first expiry time * @param t1 the first reference time * @param t2 the second reference time * @return the factor */ public double futuresConvexityFactor( HullWhiteOneFactorPiecewiseConstantParameters data, double t0, double t1, double t2) { double factor1 = Math.exp(-data.getMeanReversion() * t1) - Math.exp(-data.getMeanReversion() * t2); double numerator = 2 * data.getMeanReversion() * data.getMeanReversion() * data.getMeanReversion(); int indexT0 = 1; // Period in which the time t0 is; volatilityTime[i-1] <= t0 < volatilityTime[i]; while (t0 > data.getVolatilityTime().get(indexT0)) { indexT0++; } double[] s = new double[indexT0 + 1]; System.arraycopy(data.getVolatilityTime().toArray(), 0, s, 0, indexT0); s[indexT0] = t0; double factor2 = 0.0; for (int loopperiod = 0; loopperiod < indexT0; loopperiod++) { factor2 += data.getVolatility().get(loopperiod) * data.getVolatility().get(loopperiod) * (Math.exp(data.getMeanReversion() * s[loopperiod + 1]) - Math.exp(data.getMeanReversion() * s[loopperiod])) * (2 - Math.exp(-data.getMeanReversion() * (t2 - s[loopperiod + 1])) - Math.exp(-data.getMeanReversion() * (t2 - s[loopperiod]))); } return Math.exp(factor1 / numerator * factor2); } /** * Calculates the future convexity factor and its derivatives with respect to the model volatilities. *

* The factor is called gamma in the reference: * Henrard, M. "The Irony in the derivatives discounting Part II: the crisis", Wilmott Journal, 2010, 2, 301-316 * * @param data the Hull-White model parameters * @param t0 the expiry time * @param t1 the first reference time * @param t2 the second reference time * @return the factor and drivatives */ public ValueDerivatives futuresConvexityFactorAdjoint( HullWhiteOneFactorPiecewiseConstantParameters data, double t0, double t1, double t2) { double factor1 = Math.exp(-data.getMeanReversion() * t1) - Math.exp(-data.getMeanReversion() * t2); double numerator = 2 * data.getMeanReversion() * data.getMeanReversion() * data.getMeanReversion(); int indexT0 = 1; // Period in which the time t0 is; volatilityTime[i-1] <= t0 < volatilityTime[i]; while (t0 > data.getVolatilityTime().get(indexT0)) { indexT0++; } double[] s = new double[indexT0 + 1]; System.arraycopy(data.getVolatilityTime().toArray(), 0, s, 0, indexT0); s[indexT0] = t0; double factor2 = 0.0; double[] factorExp = new double[indexT0]; for (int loopperiod = 0; loopperiod < indexT0; loopperiod++) { factorExp[loopperiod] = (Math.exp(data.getMeanReversion() * s[loopperiod + 1]) - Math.exp(data.getMeanReversion() * s[loopperiod])) * (2 - Math.exp(-data.getMeanReversion() * (t2 - s[loopperiod + 1])) - Math.exp(-data.getMeanReversion() * (t2 - s[loopperiod]))); factor2 += data.getVolatility().get(loopperiod) * data.getVolatility().get(loopperiod) * factorExp[loopperiod]; } double factor = Math.exp(factor1 / numerator * factor2); // Backward sweep double factorBar = 1.0; double factor2Bar = factor1 / numerator * factor * factorBar; double[] derivatives = new double[data.getVolatility().size()]; for (int loopperiod = 0; loopperiod < indexT0; loopperiod++) { derivatives[loopperiod] = 2 * data.getVolatility().get(loopperiod) * factorExp[loopperiod] * factor2Bar; } return ValueDerivatives.of(factor, DoubleArray.ofUnsafe(derivatives)); } /** * Calculates the payment delay convexity factor used in coupons with mismatched dates pricing. * * @param parameters the Hull-White model parameters * @param startExpiry the start expiry time * @param endExpiry the end expiry time * @param u the fixing period start time * @param v the fixing period end time * @param tp the payment time * @return the factor */ public double paymentDelayConvexityFactor( HullWhiteOneFactorPiecewiseConstantParameters parameters, double startExpiry, double endExpiry, double u, double v, double tp) { double a = parameters.getMeanReversion(); double factor1 = (Math.exp(-a * v) - Math.exp(-a * tp)) * (Math.exp(-a * v) - Math.exp(-a * u)); double numerator = 2 * a * a * a; int indexStart = Math.abs(Arrays.binarySearch(parameters.getVolatilityTime().toArray(), startExpiry) + 1); // Period in which the time startExpiry is; volatilityTime.get(i-1) <= startExpiry < volatilityTime.get(i); int indexEnd = Math.abs(Arrays.binarySearch(parameters.getVolatilityTime().toArray(), endExpiry) + 1); // Period in which the time endExpiry is; volatilityTime.get(i-1) <= endExpiry < volatilityTime.get(i); int sLen = indexEnd - indexStart + 1; double[] s = new double[sLen + 1]; s[0] = startExpiry; System.arraycopy(parameters.getVolatilityTime().toArray(), indexStart, s, 1, sLen - 1); s[sLen] = endExpiry; double factor2 = 0.0; double[] exp2as = new double[sLen + 1]; for (int loopperiod = 0; loopperiod < sLen + 1; loopperiod++) { exp2as[loopperiod] = Math.exp(2 * a * s[loopperiod]); } for (int loopperiod = 0; loopperiod < sLen; loopperiod++) { factor2 += parameters.getVolatility().get(loopperiod + indexStart - 1) * parameters.getVolatility().get(loopperiod + indexStart - 1) * (exp2as[loopperiod + 1] - exp2as[loopperiod]); } return Math.exp(factor1 * factor2 / numerator); } /** * Calculates the (zero-coupon) bond volatility divided by a bond numeraire, i.e., alpha, for a given period. * * @param data the Hull-White model data * @param startExpiry the start time of the expiry period * @param endExpiry the end time of the expiry period * @param numeraireTime the time to maturity for the bond numeraire * @param bondMaturity the time to maturity for the bond * @return the re-based bond volatility */ public double alpha( HullWhiteOneFactorPiecewiseConstantParameters data, double startExpiry, double endExpiry, double numeraireTime, double bondMaturity) { double factor1 = Math.exp(-data.getMeanReversion() * numeraireTime) - Math.exp(-data.getMeanReversion() * bondMaturity); double numerator = 2 * data.getMeanReversion() * data.getMeanReversion() * data.getMeanReversion(); int indexStart = Math.abs(Arrays.binarySearch(data.getVolatilityTime().toArray(), startExpiry) + 1); // Period in which the time startExpiry is; volatilityTime.get(i-1) <= startExpiry < volatilityTime.get(i); int indexEnd = Math.abs(Arrays.binarySearch(data.getVolatilityTime().toArray(), endExpiry) + 1); // Period in which the time endExpiry is; volatilityTime.get(i-1) <= endExpiry < volatilityTime.get(i); int sLen = indexEnd - indexStart + 1; double[] s = new double[sLen + 1]; s[0] = startExpiry; System.arraycopy(data.getVolatilityTime().toArray(), indexStart, s, 1, sLen - 1); s[sLen] = endExpiry; double factor2 = 0d; double[] exp2as = new double[sLen + 1]; for (int loopperiod = 0; loopperiod < sLen + 1; loopperiod++) { exp2as[loopperiod] = Math.exp(2 * data.getMeanReversion() * s[loopperiod]); } for (int loopperiod = 0; loopperiod < sLen; loopperiod++) { factor2 += data.getVolatility().get(loopperiod + indexStart - 1) * data.getVolatility().get(loopperiod + indexStart - 1) * (exp2as[loopperiod + 1] - exp2as[loopperiod]); } return factor1 * Math.sqrt(factor2 / numerator); } /** * Calculates the (zero-coupon) bond volatility divided by a bond numeraire, i.e., alpha, for a given period and * its derivatives. *

* The derivative values are the derivatives of the function alpha with respect to the piecewise constant volatilities. * * @param data the Hull-White model data * @param startExpiry the start time of the expiry period * @param endExpiry the end time of the expiry period * @param numeraireTime the time to maturity for the bond numeraire * @param bondMaturity the time to maturity for the bond * @return The re-based bond volatility */ public ValueDerivatives alphaAdjoint( HullWhiteOneFactorPiecewiseConstantParameters data, double startExpiry, double endExpiry, double numeraireTime, double bondMaturity) { // Forward sweep double factor1 = Math.exp(-data.getMeanReversion() * numeraireTime) - Math.exp(-data.getMeanReversion() * bondMaturity); double numerator = 2 * data.getMeanReversion() * data.getMeanReversion() * data.getMeanReversion(); int indexStart = Math.abs(Arrays.binarySearch(data.getVolatilityTime().toArray(), startExpiry) + 1); // Period in which the time startExpiry is; volatilityTime.get(i-1) <= startExpiry < volatilityTime.get(i); int indexEnd = Math.abs(Arrays.binarySearch(data.getVolatilityTime().toArray(), endExpiry) + 1); // Period in which the time endExpiry is; volatilityTime.get(i-1) <= endExpiry < volatilityTime.get(i); int sLen = indexEnd - indexStart + 1; double[] s = new double[sLen + 1]; s[0] = startExpiry; System.arraycopy(data.getVolatilityTime().toArray(), indexStart, s, 1, sLen - 1); s[sLen] = endExpiry; double factor2 = 0.0; double[] exp2as = new double[sLen + 1]; for (int loopperiod = 0; loopperiod < sLen + 1; loopperiod++) { exp2as[loopperiod] = Math.exp(2 * data.getMeanReversion() * s[loopperiod]); } for (int loopperiod = 0; loopperiod < sLen; loopperiod++) { factor2 += data.getVolatility().get(loopperiod + indexStart - 1) * data.getVolatility().get(loopperiod + indexStart - 1) * (exp2as[loopperiod + 1] - exp2as[loopperiod]); } double sqrtFactor2Num = Math.sqrt(factor2 / numerator); double alpha = factor1 * sqrtFactor2Num; // Backward sweep double alphaBar = 1.0; double factor2Bar = factor1 / sqrtFactor2Num / 2.0 / numerator * alphaBar; double[] derivatives = new double[data.getVolatility().size()]; for (int loopperiod = 0; loopperiod < sLen; loopperiod++) { derivatives[loopperiod + indexStart - 1] = 2 * data.getVolatility().get(loopperiod + indexStart - 1) * (exp2as[loopperiod + 1] - exp2as[loopperiod]) * factor2Bar; } return ValueDerivatives.of(alpha, DoubleArray.ofUnsafe(derivatives)); } /** * Calculates the exercise boundary for swaptions. *

* Reference: Henrard, M. (2003). "Explicit bond option and swaption formula in Heath-Jarrow-Morton one-factor model". * International Journal of Theoretical and Applied Finance, 6(1):57--72. * * @param discountedCashFlow the cash flow equivalent discounted to today * @param alpha the zero-coupon bond volatilities * @return the exercise boundary */ public double kappa(DoubleArray discountedCashFlow, DoubleArray alpha) { final Function swapValue = new Function() { @Override public Double apply(Double x) { double error = 0.0; for (int loopcf = 0; loopcf < alpha.size(); loopcf++) { error += discountedCashFlow.get(loopcf) * Math.exp(-0.5 * alpha.get(loopcf) * alpha.get(loopcf) - (alpha.get(loopcf) - alpha.get(0)) * x); } return error; } }; BracketRoot bracketer = new BracketRoot(); double accuracy = 1.0E-8; RidderSingleRootFinder rootFinder = new RidderSingleRootFinder(accuracy); double[] range = bracketer.getBracketedPoints(swapValue, -2.0, 2.0); return rootFinder.getRoot(swapValue, range[0], range[1]); } //------------------------------------------------------------------------- /** * Calculates the beta parameter. *

* This is intended to be used in particular for Bermudan swaption first step of the pricing. *

* Reference: Henrard, "M. Bermudan Swaptions in Gaussian HJM One-Factor Model: Analytical and Numerical Approaches". * SSRN, October 2008. Available at SSRN: http://ssrn.com/abstract=1287982 * * @param data the Hull-White model data * @param startExpiry the start time of the expiry period * @param endExpiry the end time of the expiry period * @return the re-based bond volatility */ public double beta(HullWhiteOneFactorPiecewiseConstantParameters data, double startExpiry, double endExpiry) { double numerator = 2 * data.getMeanReversion(); int indexStart = 1; // Period in which the time startExpiry is; volatilityTime.get(i-1) <= startExpiry < volatilityTime.get(i); while (startExpiry > data.getVolatilityTime().get(indexStart)) { indexStart++; } int indexEnd = indexStart; // Period in which the time endExpiry is; volatilityTime.get(i-1) <= endExpiry < volatilityTime.get(i); while (endExpiry > data.getVolatilityTime().get(indexEnd)) { indexEnd++; } int sLen = indexEnd - indexStart + 1; double[] s = new double[sLen + 1]; s[0] = startExpiry; System.arraycopy(data.getVolatilityTime().toArray(), indexStart, s, 1, sLen - 1); s[sLen] = endExpiry; double denominator = 0.0; for (int loopperiod = 0; loopperiod < sLen; loopperiod++) { denominator += data.getVolatility().get(loopperiod + indexStart - 1) * data.getVolatility().get(loopperiod + indexStart - 1) * (Math.exp(2 * data.getMeanReversion() * s[loopperiod + 1]) - Math.exp(2 * data.getMeanReversion() * s[loopperiod])); } return Math.sqrt(denominator / numerator); } /** * Calculates the common part of the exercise boundary of European swaptions forward. *

* This is intended to be used in particular for Bermudan swaption first step of the pricing. *

* Reference: Henrard, "M. Bermudan Swaptions in Gaussian HJM One-Factor Model: Analytical and Numerical Approaches". * SSRN, October 2008. Available at SSRN: http://ssrn.com/abstract=1287982 * * @param discountedCashFlow the swap discounted cash flows * @param alpha2 square of the alpha parameter * @param hwH the H factors * @return the exercise boundary */ public double lambda(DoubleArray discountedCashFlow, DoubleArray alpha2, DoubleArray hwH) { final Function swapValue = new Function() { @Override public Double apply(Double x) { double value = 0.0; for (int loopcf = 0; loopcf < alpha2.size(); loopcf++) { value += discountedCashFlow.get(loopcf) * Math.exp(-0.5 * alpha2.get(loopcf) - hwH.get(loopcf) * x); } return value; } }; BracketRoot bracketer = new BracketRoot(); double accuracy = 1.0E-8; RidderSingleRootFinder rootFinder = new RidderSingleRootFinder(accuracy); double[] range = bracketer.getBracketedPoints(swapValue, -2.0, 2.0); return rootFinder.getRoot(swapValue, range[0], range[1]); } /** * Calculates the maturity dependent part of the volatility (function called H in the implementation note). * * @param hwParameters the model parameters * @param u the start time * @param v the end time * @return the volatility */ public DoubleMatrix volatilityMaturityPart( HullWhiteOneFactorPiecewiseConstantParameters hwParameters, double u, DoubleMatrix v) { double a = hwParameters.getMeanReversion(); double[][] result = new double[v.rowCount()][]; double expau = Math.exp(-a * u); for (int loopcf1 = 0; loopcf1 < v.rowCount(); loopcf1++) { DoubleArray vRow = v.row(loopcf1); result[loopcf1] = new double[vRow.size()]; for (int loopcf2 = 0; loopcf2 < vRow.size(); loopcf2++) { result[loopcf1][loopcf2] = (expau - Math.exp(-a * vRow.get(loopcf2))) / a; } } return DoubleMatrix.copyOf(result); } //------------------------------------------------------------------------- /** * Calculates the swap rate for a given value of the standard normal random variable * in the {@code P(*,theta)} numeraire. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the swap rate */ public double swapRate( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double numerator = 0.0; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { numerator += discountedCashFlowIbor.get(loopcf) * Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); } double denominator = 0.0; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { denominator += discountedCashFlowFixed.get(loopcf) * Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); } return -numerator / denominator; } /** * Calculates the first order derivative of the swap rate with respect to the value of the standard * normal random variable in the {@code P(*,theta)} numeraire. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the first derivative of the swap rate */ public double swapRateDx1( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double f = 0.0; double df = 0.0; double term; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { term = discountedCashFlowIbor.get(loopcf) * Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); f += term; df += -alphaIbor.get(loopcf) * term; } double g = 0.0; double dg = 0.0; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { term = discountedCashFlowFixed.get(loopcf) * Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); g += term; dg += -alphaFixed.get(loopcf) * term; } return -(df * g - f * dg) / (g * g); } /** * Calculates the second order derivative of the swap rate with respect to the value * of the standard normal random variable in the {@code P(*,theta)} numeraire. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the second derivative of the swap rate */ public double swapRateDx2( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double f = 0.0; double df = 0.0; double df2 = 0.0; double term; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { term = discountedCashFlowIbor.get(loopcf) * Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); f += term; df += -alphaIbor.get(loopcf) * term; df2 += alphaIbor.get(loopcf) * alphaIbor.get(loopcf) * term; } double g = 0.0; double dg = 0.0; double dg2 = 0.0; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { term = discountedCashFlowFixed.get(loopcf) * Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); g += term; dg += -alphaFixed.get(loopcf) * term; dg2 += alphaFixed.get(loopcf) * alphaFixed.get(loopcf) * term; } double g2 = g * g; double g3 = g * g2; return -df2 / g + (2 * df * dg + f * dg2) / g2 - 2 * f * dg * dg / g3; } /** * Calculates the first order derivative of the swap rate with respect to * the {@code discountedCashFlowIbor} in the {@code P(*,theta)} numeraire. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the swap rate and derivatives */ public ValueDerivatives swapRateDdcfi1( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double denominator = 0.0; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { denominator += discountedCashFlowFixed.get(loopcf) * Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); } double numerator = 0.0; double[] swapRateDdcfi1 = new double[sizeIbor]; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { double exp = Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); swapRateDdcfi1[loopcf] = -exp / denominator; numerator += discountedCashFlowIbor.get(loopcf) * exp; } return ValueDerivatives.of(-numerator / denominator, DoubleArray.ofUnsafe(swapRateDdcfi1)); } /** * Calculates the first order derivative of the swap rate with respect to the * {@code discountedCashFlowFixed} in the {@code P(*,theta)} numeraire. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the swap rate and derivatives */ public ValueDerivatives swapRateDdcff1( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double[] expD = new double[sizeIbor]; double numerator = 0.0; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { numerator += discountedCashFlowIbor.get(loopcf) * Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); } double denominator = 0.0; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { expD[loopcf] = Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); denominator += discountedCashFlowFixed.get(loopcf) * expD[loopcf]; } double ratio = numerator / (denominator * denominator); double[] swapRateDdcff1 = new double[sizeFixed]; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { swapRateDdcff1[loopcf] = ratio * expD[loopcf]; } return ValueDerivatives.of(-numerator / denominator, DoubleArray.ofUnsafe(swapRateDdcff1)); } /** * Calculates the first order derivative of the swap rate with respect to the {@code alphaIbor} * in the {@code P(*,theta)} numeraire. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the swap rate and derivatives */ public ValueDerivatives swapRateDai1( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double denominator = 0.0; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { denominator += discountedCashFlowFixed.get(loopcf) * Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); } double numerator = 0.0; double[] swapRateDai1 = new double[sizeIbor]; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { double exp = Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); swapRateDai1[loopcf] = discountedCashFlowIbor.get(loopcf) * exp * (x + alphaIbor.get(loopcf)) / denominator; numerator += discountedCashFlowIbor.get(loopcf) * exp; } return ValueDerivatives.of(-numerator / denominator, DoubleArray.ofUnsafe(swapRateDai1)); } /** * Calculates the first order derivative of the swap rate with respect to the {@code alphaFixed} * in the {@code P(*,theta)} numeraire. * * @param x the random variable value. * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the swap rate and derivatives */ public ValueDerivatives swapRateDaf1( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double[] expD = new double[sizeIbor]; double numerator = 0.0; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { numerator += discountedCashFlowIbor.get(loopcf) * Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); } double denominator = 0.0; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { expD[loopcf] = discountedCashFlowFixed.get(loopcf) * Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); denominator += expD[loopcf]; } double ratio = numerator / (denominator * denominator); double[] swapRateDaf1 = new double[sizeFixed]; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { swapRateDaf1[loopcf] = ratio * expD[loopcf] * (-x - alphaFixed.get(loopcf)); } return ValueDerivatives.of(-numerator / denominator, DoubleArray.ofUnsafe(swapRateDaf1)); } /** * Calculates the first order derivative with respect to the discountedCashFlowFixed and to the discountedCashFlowIbor * of the of swap rate second derivative with respect to the random variable x in the {@code P(*,theta)} numeraire. *

* The result is made of a pair of arrays. The first one is the derivative with respect to {@code discountedCashFlowFixed} * and the second one with respect to {@code discountedCashFlowIbor}. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the swap rate derivatives */ public Pair swapRateDx2Ddcf1( double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double f = 0.0; double df = 0.0; double df2 = 0.0; double[] termIbor = new double[sizeIbor]; double[] expIbor = new double[sizeIbor]; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { expIbor[loopcf] = Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); termIbor[loopcf] = discountedCashFlowIbor.get(loopcf) * expIbor[loopcf]; f += termIbor[loopcf]; df += -alphaIbor.get(loopcf) * termIbor[loopcf]; df2 += alphaIbor.get(loopcf) * alphaIbor.get(loopcf) * termIbor[loopcf]; } double g = 0.0; double dg = 0.0; double dg2 = 0.0; double[] termFixed = new double[sizeFixed]; double[] expFixed = new double[sizeFixed]; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { expFixed[loopcf] = Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); termFixed[loopcf] = discountedCashFlowFixed.get(loopcf) * expFixed[loopcf]; g += termFixed[loopcf]; dg += -alphaFixed.get(loopcf) * termFixed[loopcf]; dg2 += alphaFixed.get(loopcf) * alphaFixed.get(loopcf) * termFixed[loopcf]; } double g2 = g * g; double g3 = g * g2; double g4 = g * g3; // Backward sweep double dx2Bar = 1d; double gBar = (df2 / g2 - 2d * f * dg2 / g3 - 4d * df * dg / g3 + 6d * dg * dg * f / g4) * dx2Bar; double dgBar = (2d * df / g2 - 4d * f * dg / g3) * dx2Bar; double dg2Bar = f / g2 * dx2Bar; double fBar = (dg2 / g2 - 2d * dg * dg / g3) * dx2Bar; double dfBar = 2d * dg / g2 * dx2Bar; double df2Bar = -dx2Bar / g; double[] discountedCashFlowFixedBar = new double[sizeFixed]; double[] termFixedBar = new double[sizeFixed]; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { termFixedBar[loopcf] = gBar - alphaFixed.get(loopcf) * dgBar + alphaFixed.get(loopcf) * alphaFixed.get(loopcf) * dg2Bar; discountedCashFlowFixedBar[loopcf] = expFixed[loopcf] * termFixedBar[loopcf]; } double[] discountedCashFlowIborBar = new double[sizeIbor]; double[] termIborBar = new double[sizeIbor]; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { termIborBar[loopcf] = fBar - alphaIbor.get(loopcf) * dfBar + alphaIbor.get(loopcf) * alphaIbor.get(loopcf) * df2Bar; discountedCashFlowIborBar[loopcf] = expIbor[loopcf] * termIborBar[loopcf]; } return Pair.of(DoubleArray.copyOf(discountedCashFlowFixedBar), DoubleArray.copyOf(discountedCashFlowIborBar)); } /** * Calculates the first order derivative with respect to the alphaFixed and to the alphaIbor of * the of swap rate second derivative with respect to the random variable x in the * {@code P(*,theta)} numeraire. *

* The result is made of a pair of arrays. The first one is the derivative with respect to {@code alphaFixed} and * the second one with respect to {@code alphaIbor}. * * @param x the random variable value * @param discountedCashFlowFixed the discounted cash flows equivalent of the swap fixed leg * @param alphaFixed the zero-coupon bond volatilities for the swap fixed leg * @param discountedCashFlowIbor the discounted cash flows equivalent of the swap Ibor leg * @param alphaIbor the zero-coupon bond volatilities for the swap Ibor leg * @return the swap rate derivatives */ public Pair swapRateDx2Da1(double x, DoubleArray discountedCashFlowFixed, DoubleArray alphaFixed, DoubleArray discountedCashFlowIbor, DoubleArray alphaIbor) { int sizeIbor = discountedCashFlowIbor.size(); int sizeFixed = discountedCashFlowFixed.size(); ArgChecker.isTrue(sizeIbor == alphaIbor.size(), "Length should be equal"); ArgChecker.isTrue(sizeFixed == alphaFixed.size(), "Length should be equal"); double f = 0.0; double df = 0.0; double df2 = 0.0; double[] termIbor = new double[sizeIbor]; double[] expIbor = new double[sizeIbor]; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { expIbor[loopcf] = Math.exp(-alphaIbor.get(loopcf) * x - 0.5 * alphaIbor.get(loopcf) * alphaIbor.get(loopcf)); termIbor[loopcf] = discountedCashFlowIbor.get(loopcf) * expIbor[loopcf]; f += termIbor[loopcf]; df += -alphaIbor.get(loopcf) * termIbor[loopcf]; df2 += alphaIbor.get(loopcf) * alphaIbor.get(loopcf) * termIbor[loopcf]; } double g = 0.0; double dg = 0.0; double dg2 = 0.0; double[] termFixed = new double[sizeFixed]; double[] expFixed = new double[sizeFixed]; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { expFixed[loopcf] = Math.exp(-alphaFixed.get(loopcf) * x - 0.5 * alphaFixed.get(loopcf) * alphaFixed.get(loopcf)); termFixed[loopcf] = discountedCashFlowFixed.get(loopcf) * expFixed[loopcf]; g += termFixed[loopcf]; dg += -alphaFixed.get(loopcf) * termFixed[loopcf]; dg2 += alphaFixed.get(loopcf) * alphaFixed.get(loopcf) * termFixed[loopcf]; } double g2 = g * g; double g3 = g * g2; double g4 = g * g3; // Backward sweep double dx2Bar = 1d; double gBar = (df2 / g2 - 2d * f * dg2 / g3 - 4d * df * dg / g3 + 6d * dg * dg * f / g4) * dx2Bar; double dgBar = (2d * df / g2 - 4d * f * dg / g3) * dx2Bar; double dg2Bar = f / g2 * dx2Bar; double fBar = (dg2 / g2 - 2d * dg * dg / g3) * dx2Bar; double dfBar = 2d * dg / g2 * dx2Bar; double df2Bar = -dx2Bar / g; double[] alphaFixedBar = new double[sizeFixed]; double[] termFixedBar = new double[sizeFixed]; for (int loopcf = 0; loopcf < sizeFixed; loopcf++) { termFixedBar[loopcf] = gBar - alphaFixed.get(loopcf) * dgBar + alphaFixed.get(loopcf) * alphaFixed.get(loopcf) * dg2Bar; alphaFixedBar[loopcf] = termFixed[loopcf] * (-x - alphaFixed.get(loopcf)) * termFixedBar[loopcf] - termFixed[loopcf] * dgBar + 2d * alphaFixed.get(loopcf) * termFixed[loopcf] * dg2Bar; } double[] alphaIborBar = new double[sizeIbor]; double[] termIborBar = new double[sizeIbor]; for (int loopcf = 0; loopcf < sizeIbor; loopcf++) { termIborBar[loopcf] = fBar - alphaIbor.get(loopcf) * dfBar + alphaIbor.get(loopcf) * alphaIbor.get(loopcf) * df2Bar; alphaIborBar[loopcf] = termIbor[loopcf] * (-x - alphaIbor.get(loopcf)) * termIborBar[loopcf] - termIbor[loopcf] * dfBar + 2d * alphaIbor.get(loopcf) * termIbor[loopcf] * df2Bar; } return Pair.of(DoubleArray.copyOf(alphaFixedBar), DoubleArray.copyOf(alphaIborBar)); } //------------------------- AUTOGENERATED START ------------------------- /** * The meta-bean for {@code HullWhiteOneFactorPiecewiseConstantInterestRateModel}. */ private static final TypedMetaBean META_BEAN = LightMetaBean.of(HullWhiteOneFactorPiecewiseConstantInterestRateModel.class, MethodHandles.lookup()); /** * The meta-bean for {@code HullWhiteOneFactorPiecewiseConstantInterestRateModel}. * @return the meta-bean, not null */ public static TypedMetaBean meta() { return META_BEAN; } static { MetaBean.register(META_BEAN); } /** * The serialization version id. */ private static final long serialVersionUID = 1L; private HullWhiteOneFactorPiecewiseConstantInterestRateModel() { } @Override public TypedMetaBean metaBean() { return META_BEAN; } //----------------------------------------------------------------------- @Override public boolean equals(Object obj) { if (obj == this) { return true; } if (obj != null && obj.getClass() == this.getClass()) { return true; } return false; } @Override public int hashCode() { int hash = getClass().hashCode(); return hash; } @Override public String toString() { StringBuilder buf = new StringBuilder(32); buf.append("HullWhiteOneFactorPiecewiseConstantInterestRateModel{"); buf.append('}'); return buf.toString(); } //-------------------------- AUTOGENERATED END -------------------------- }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy