All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.pricer.impl.volatility.smile.SabrHaganVolatilityFunctionProvider Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (C) 2015 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.pricer.impl.volatility.smile;

import static com.opengamma.strata.math.MathUtils.nearOne;
import static com.opengamma.strata.math.MathUtils.nearZero;
import static com.opengamma.strata.math.MathUtils.pow2;
import static com.opengamma.strata.math.MathUtils.pow3;

import java.io.Serializable;
import java.lang.invoke.MethodHandles;

import org.joda.beans.ImmutableBean;
import org.joda.beans.MetaBean;
import org.joda.beans.TypedMetaBean;
import org.joda.beans.gen.BeanDefinition;
import org.joda.beans.impl.light.LightMetaBean;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.google.common.math.DoubleMath;
import com.google.common.primitives.Doubles;
import com.opengamma.strata.basics.value.ValueDerivatives;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.market.ValueType;
import com.opengamma.strata.pricer.model.SabrVolatilityFormula;

/**
 * The Hagan SABR volatility function provider.
 * 

* This class provides the functions of volatility and its sensitivity to the SABR model parameters based on the original * Hagan SABR formula. *

* Reference: Hagan, P.; Kumar, D.; Lesniewski, A. & Woodward, D. "Managing smile risk", Wilmott Magazine, 2002, September, 84-108 *

* OpenGamma documentation: SABR Implementation, OpenGamma documentation n. 33, April 2016. */ @BeanDefinition(style = "light") public final class SabrHaganVolatilityFunctionProvider extends VolatilityFunctionProvider implements SabrVolatilityFormula, ImmutableBean, Serializable { /** * Default implementation. */ public static final SabrHaganVolatilityFunctionProvider DEFAULT = new SabrHaganVolatilityFunctionProvider(); private static final Logger log = LoggerFactory.getLogger(SabrHaganVolatilityFunctionProvider.class); /* internal parameters */ private static final double CUTOFF_MONEYNESS = 1e-12; private static final double SMALL_Z = 1e-6; private static final double LARGE_NEG_Z = -1e6; private static final double LARGE_POS_Z = 1e8; private static final double BETA_EPS = 1e-8; private static final double RHO_EPS = 1e-5; private static final double RHO_EPS_NEGATIVE = 1e-8; private static final double ATM_EPS = 1e-7; private static final double MIN_VOL = 1e-6; // Minimal volatility, to avoid negative volatility for extreme parameters @Override public ValueType getVolatilityType() { return ValueType.BLACK_VOLATILITY; // SABR implemented with Black implied volatility } //------------------------------------------------------------------------- @Override public double volatility(double forward, double strike, double timeToExpiry, SabrFormulaData data) { ArgChecker.notNull(data, "data"); double alpha = data.getAlpha(); double beta = data.getBeta(); double rho = data.getRho(); double nu = data.getNu(); return volatility(forward, strike, timeToExpiry, alpha, beta, rho, nu); } @Override public double volatility( double forward, double strike, double timeToExpiry, double alpha, double beta, double rho, double nu) { ArgChecker.isTrue(forward > 0.0, "forward must be greater than zero"); ArgChecker.isTrue(strike >= 0.0, "strike must be greater than zero"); ArgChecker.isTrue(timeToExpiry >= 0.0, "timeToExpiry must be greater than zero"); if (alpha == 0.0) { return 0.0; } double cutoff = forward * CUTOFF_MONEYNESS; double k; if (strike < cutoff) { log.info("Given strike of {} is less than cutoff at {}, therefore the strike is taken as {}", new Object[] { strike, cutoff, cutoff}); k = cutoff; } else { k = strike; } double vol, z, zOverChi; double beta1 = 1 - beta; if (DoubleMath.fuzzyEquals(forward, k, ATM_EPS)) { double f1 = Math.pow(forward, beta1); vol = alpha * (1 + timeToExpiry * (beta1 * beta1 * alpha * alpha / 24 / f1 / f1 + rho * alpha * beta * nu / 4 / f1 + nu * nu * (2 - 3 * rho * rho) / 24)) / f1; } else { if (nearZero(beta, BETA_EPS)) { double ln = Math.log(forward / k); z = nu * Math.sqrt(forward * k) * ln / alpha; zOverChi = getZOverChi(rho, z); vol = alpha * ln * zOverChi * (1 + timeToExpiry * (alpha * alpha / forward / k + nu * nu * (2 - 3 * rho * rho)) / 24) / (forward - k); } else if (nearOne(beta, BETA_EPS)) { double ln = Math.log(forward / k); z = nu * ln / alpha; zOverChi = getZOverChi(rho, z); vol = alpha * zOverChi * (1 + timeToExpiry * (rho * alpha * nu / 4 + nu * nu * (2 - 3 * rho * rho) / 24)); } else { double ln = Math.log(forward / k); double f1 = Math.pow(forward * k, beta1); double f1Sqrt = Math.sqrt(f1); double lnBetaSq = pow2(beta1 * ln); z = nu * f1Sqrt * ln / alpha; zOverChi = getZOverChi(rho, z); double first = alpha / (f1Sqrt * (1 + lnBetaSq / 24 + lnBetaSq * lnBetaSq / 1920)); double second = zOverChi; double third = 1 + timeToExpiry * (beta1 * beta1 * alpha * alpha / 24 / f1 + rho * nu * beta * alpha / 4 / f1Sqrt + nu * nu * (2 - 3 * rho * rho) / 24); vol = first * second * third; } } //There is nothing to prevent the nu * nu * (2 - 3 * rho * rho) / 24 to be large negative, and hence the volatility negative return Math.max(MIN_VOL, vol); } /** * Computes the implied volatility in the SABR model and its derivatives. *

* The derivatives are stored in an array with: *

    *
  • [0] derivative with respect to the forward *
  • [1] derivative with respect to the strike *
  • [2] derivative with respect to the alpha *
  • [3] derivative with respect to the beta *
  • [4] derivative with respect to the rho *
  • [5] derivative with respect to the nu *
* * @param forward the forward value of the underlying * @param strike the strike value of the option * @param timeToExpiry the time to expiry of the option * @param data the SABR data * @return the volatility and associated derivatives */ @Override public ValueDerivatives volatilityAdjoint(double forward, double strike, double timeToExpiry, SabrFormulaData data) { ArgChecker.notNull(data, "data"); double alpha = data.getAlpha(); double beta = data.getBeta(); double rho = data.getRho(); double nu = data.getNu(); return volatilityAdjoint(forward, strike, timeToExpiry, alpha, beta, rho, nu); } /** * Computes the implied volatility in the SABR model and its derivatives. *

* The derivatives are stored in an array with: *

    *
  • [0] derivative with respect to the forward *
  • [1] derivative with respect to the strike *
  • [2] derivative with respect to the alpha *
  • [3] derivative with respect to the beta *
  • [4] derivative with respect to the rho *
  • [5] derivative with respect to the nu *
* * @param forward the forward value of the underlying * @param strike the strike value of the option * @param timeToExpiry the time to expiry of the option * @param alpha the SABR alpha value * @param beta the SABR beta value * @param rho the SABR rho value * @param nu the SABR nu value * @return the volatility and associated derivatives */ @Override public ValueDerivatives volatilityAdjoint( double forward, double strike, double timeToExpiry, double alpha, double beta, double rho, double nu) { ArgChecker.isTrue(forward > 0.0, "forward must be greater than zero"); ArgChecker.isTrue(strike >= 0.0, "strike must be greater than zero"); ArgChecker.isTrue(timeToExpiry >= 0.0, "timeToExpiry must be greater than zero"); double cutoff = forward * CUTOFF_MONEYNESS; double k = strike; if (k < cutoff) { log.info( "Given strike of {} is less than cutoff at {}, therefore the strike is taken as {}", new Object[] {k, cutoff, cutoff}); k = cutoff; } double betaStar = 1 - beta; double rhoRhoNuFactor = (2 - 3 * rho * rho) * nu / 24; if (alpha == 0.0) { double alphaBar; if (DoubleMath.fuzzyEquals(forward, k, ATM_EPS)) { //TODO should this is relative alphaBar = (1 + rhoRhoNuFactor * nu * timeToExpiry) / Math.pow(forward, betaStar); } else { //for non-atm options the alpha sensitivity at alpha = 0 is infinite. Returning this will most likely break calibrations, // so we return an arbitrary large number alphaBar = 1e7; } return ValueDerivatives.of(0d, DoubleArray.of(0, 0, alphaBar, 0, 0, 0)); } // Implementation note: Forward sweep. double sfK = Math.pow(forward * k, betaStar / 2); double lnrfK = Math.log(forward / k); double z = nu / alpha * sfK * lnrfK; // extract calculations that are reused (for performance) double betaStarPow2 = betaStar * betaStar; double betaStarPow4Div1920 = betaStarPow2 * betaStarPow2 / 1920; double lnrfKPow2 = lnrfK * lnrfK; double lnrfKPow4 = lnrfKPow2 * lnrfKPow2; double sfKMul4 = 4 * sfK; double sfKPow2 = sfK * sfK; double rhoStar = 1 - rho; boolean rhoNearZero = nearZero(rhoStar, RHO_EPS); boolean zNearZero = nearZero(z, SMALL_Z); double rzxz; double xz = 0; double zRhoFactorSqrtFactor = rhoStar; double zRhoFactorInvSqrt = 1; if (zNearZero) { rzxz = 1.0 - 0.5 * z * rho; //small z expansion to z^2 terms } else if (rhoNearZero) { if (z < 1.0) { xz = -Math.log(1.0d - z); rzxz = z / xz; } else { throw new IllegalArgumentException("can't handle z>=1, rho=0"); } } else { double zRhoFactorSqrt = Math.sqrt(1 - 2 * rho * z + z * z); zRhoFactorSqrtFactor = zRhoFactorSqrt + z - rho; zRhoFactorInvSqrt = 1 / zRhoFactorSqrt; double arg; if (z < LARGE_NEG_Z) { arg = (rho * rho - 1) / 2 / z; //get rounding errors due to fine balanced cancellation for very large negative z } else if (z > LARGE_POS_Z) { arg = 2 * (z - rho); } else { arg = zRhoFactorSqrtFactor; } if (arg <= 0.0) { //Mathematically this cannot be less than zero, but you know what computers are like. rzxz = 0.0; } else { xz = Math.log(arg / (1 - rho)); rzxz = z / xz; } } double sf1 = sfK * (1 + (betaStarPow2 / 24) * lnrfKPow2 + betaStarPow4Div1920 * lnrfKPow4); double sf2 = (1 + (pow2(betaStar * alpha / sfK) / 24 + (rho * beta * nu * alpha) / sfKMul4 + rhoRhoNuFactor * nu) * timeToExpiry); double volatility = Math.max(MIN_VOL, alpha / sf1 * rzxz * sf2); // Implementation note: Backward sweep. double vBar = 1; double sf2Bar = alpha / sf1 * rzxz * vBar; double sf1Bar = -alpha / (sf1 * sf1) * rzxz * sf2 * vBar; double rzxzBar = alpha / sf1 * sf2 * vBar; double zBar; double xzBar = 0; if (zNearZero) { zBar = -rho / 2 * rzxzBar; } else if (rhoNearZero) { if (z < 1.0) { xzBar = -z / (xz * xz) * rzxzBar; zBar = 1.0d / xz * rzxzBar + 1.0d / (1.0d - z) * xzBar; } else { throw new IllegalArgumentException("can't handle z>=1, rho=0"); } } else { if (z < LARGE_NEG_Z) { zBar = 1 / xz * rzxzBar + xzBar / (xz * xz) * rzxzBar; } else if (z > LARGE_POS_Z) { zBar = 1 / xz * rzxzBar - xzBar / (xz * xz) * rzxzBar; } else { xzBar = -z / (xz * xz) * rzxzBar; zBar = 1 / xz * rzxzBar + 1 / zRhoFactorSqrtFactor * (0.5 * zRhoFactorInvSqrt * (-2 * rho + 2 * z) + 1) * xzBar; } } double lnrfKBar = sfK * ((betaStarPow2 / 12) * lnrfK + betaStarPow4Div1920 * 4 * lnrfKPow2 * lnrfK) * sf1Bar + nu / alpha * sfK * zBar; double sfKBar = nu / alpha * lnrfK * zBar + sf1 / sfK * sf1Bar - (pow2(betaStar * alpha) / (sfKPow2 * sfK) / 12 + (rho * beta * nu * alpha * 0.25) / sfKPow2) * timeToExpiry * sf2Bar; double strikeBar = -1 / k * lnrfKBar + betaStar * sfK / (2 * k) * sfKBar; double forwardBar = 1 / forward * lnrfKBar + betaStar * sfK / (2 * forward) * sfKBar; double nuBar = 1 / alpha * sfK * lnrfK * zBar + ((rho * beta * alpha) / sfKMul4 + rhoRhoNuFactor * 2) * timeToExpiry * sf2Bar; double rhoBar; if (Math.abs(forward - k) < ATM_EPS) { rhoBar = -z / 2 * rzxzBar; } else if (rhoNearZero) { if (z >= 1) { if (rhoStar == 0.0) { rhoBar = Double.NEGATIVE_INFINITY; //the derivative at rho = 1 is infinite - this sets it to some arbitrary large number } else { rhoBar = xzBar * (1.0 / rhoStar + (0.5 - z) / (z - 1.0) / (z - 1.0)); } } else { double zStar = 1 - z; double zDivZStar = z / zStar; rhoBar = (0.5 * pow2(zDivZStar) + 0.25 * (z - 4.0) * pow3(zDivZStar) / zStar * rhoStar) * xzBar; } } else { rhoBar = (1 / zRhoFactorSqrtFactor * (-zRhoFactorInvSqrt * z - 1) + 1 / rhoStar) * xzBar; } rhoBar += ((beta * nu * alpha) / sfKMul4 - rho * nu * nu * 0.25) * timeToExpiry * sf2Bar; double alphaPow2 = alpha * alpha; double alphaBar = -nu / alphaPow2 * sfK * lnrfK * zBar + ((betaStar * alpha / sfK) * (betaStar / sfK) / 12 + (rho * beta * nu) / sfKMul4) * timeToExpiry * sf2Bar + 1 / sf1 * rzxz * sf2 * vBar; double betaBar = -0.5 * Math.log(forward * k) * sfK * sfKBar - sfK * (betaStar / 12 * lnrfKPow2 + pow3(betaStar) / 480 * lnrfKPow4) * sf1Bar + (-betaStar * alphaPow2 / (sfKPow2 * 12) + (rho * nu * alpha) / sfKMul4) * timeToExpiry * sf2Bar; return ValueDerivatives.of(volatility, DoubleArray.of(forwardBar, strikeBar, alphaBar, betaBar, rhoBar, nuBar)); } /** * Computes the first and second order derivatives of the Black implied volatility in the SABR model. *

* The first derivative values will be stored in the input array {@code volatilityD} * The array contains, [0] Derivative w.r.t the forward, [1] the derivative w.r.t the strike, [2] the derivative w.r.t. to alpha, * [3] the derivative w.r.t. to beta, [4] the derivative w.r.t. to rho, and [5] the derivative w.r.t. to nu. * Thus the length of the array should be 6. *

* The second derivative values will be stored in the input array {@code volatilityD2}. * Only the second order derivative with respect to the forward and strike are implemented. * The array contains [0][0] forward-forward; [0][1] forward-strike; [1][1] strike-strike. * Thus the size should be 2 x 2. *

* Around ATM, a first order expansion is used to due to some 0/0-type indetermination. * The second order derivative produced is poor around ATM. * * @param forward the forward value of the underlying * @param strike the strike value of the option * @param timeToExpiry the time to expiry of the option * @param data the SABR data. * @param volatilityD the array used to return the first order derivative * @param volatilityD2 the array of array used to return the second order derivative * @return the Black implied volatility */ @Override public double volatilityAdjoint2( double forward, double strike, double timeToExpiry, SabrFormulaData data, double[] volatilityD, double[][] volatilityD2) { double k = Math.max(strike, 0.000001); double alpha = data.getAlpha(); double beta = data.getBeta(); double rho = data.getRho(); double nu = data.getNu(); // Forward double h0 = (1 - beta) / 2; double h1 = forward * k; double h1h0 = Math.pow(h1, h0); double h12 = h1h0 * h1h0; double h2 = Math.log(forward / k); double h22 = h2 * h2; double h23 = h22 * h2; double h24 = h23 * h2; double f1 = h1h0 * (1 + h0 * h0 / 6.0 * (h22 + h0 * h0 / 20.0 * h24)); double f2 = nu / alpha * h1h0 * h2; double f3 = h0 * h0 / 6.0 * alpha * alpha / h12 + rho * beta * nu * alpha / 4.0 / h1h0 + (2 - 3 * rho * rho) / 24.0 * nu * nu; double sqrtf2 = Math.sqrt(1 - 2 * rho * f2 + f2 * f2); double f2x = 0.0; double x = 0.0, xp = 0, xpp = 0; if (nearZero(f2, SMALL_Z)) { f2x = 1.0 - 0.5 * f2 * rho; //small f2 expansion to f2^2 terms } else { if (nearOne(rho, RHO_EPS)) { x = f2 < 1.0 ? -Math.log(1.0 - f2) - 0.5 * pow2(f2 / (f2 - 1.0)) * (1.0 - rho) : Math.log(2.0 * f2 - 2.0) - Math.log(1.0 - rho); } else { x = Math.log((sqrtf2 + f2 - rho) / (1 - rho)); } xp = 1. / sqrtf2; xpp = (rho - f2) / pow3(sqrtf2); f2x = f2 / x; } double sigma = Math.max(MIN_VOL, alpha / f1 * f2x * (1 + f3 * timeToExpiry)); // First level double h0Dbeta = -0.5; double sigmaDf1 = -sigma / f1; double sigmaDf2 = 0; if (nearZero(f2, SMALL_Z)) { sigmaDf2 = alpha / f1 * (1 + f3 * timeToExpiry) * -0.5 * rho; } else { sigmaDf2 = alpha / f1 * (1 + f3 * timeToExpiry) * (1.0 / x - f2 * xp / (x * x)); } double sigmaDf3 = alpha / f1 * f2x * timeToExpiry; double sigmaDf4 = f2x / f1 * (1 + f3 * timeToExpiry); double sigmaDx = -alpha / f1 * f2 / (x * x) * (1 + f3 * timeToExpiry); double[][] sigmaD2ff = new double[3][3]; sigmaD2ff[0][0] = -sigmaDf1 / f1 + sigma / (f1 * f1); //OK sigmaD2ff[0][1] = -sigmaDf2 / f1; sigmaD2ff[0][2] = -sigmaDf3 / f1; if (nearZero(f2, SMALL_Z)) { sigmaD2ff[1][2] = alpha / f1 * -0.5 * rho * timeToExpiry; } else { sigmaD2ff[1][1] = alpha / f1 * (1 + f3 * timeToExpiry) * (-2 * xp / (x * x) - f2 * xpp / (x * x) + 2 * f2 * xp * xp / (x * x * x)); sigmaD2ff[1][2] = alpha / f1 * timeToExpiry * (1.0 / x - f2 * xp / (x * x)); } sigmaD2ff[2][2] = 0.0; // double sigma = alpha / f1 * f2x * (1 + f3 * theta); // Second level double[] f1Dh = new double[3]; double[] f2Dh = new double[3]; double[] f3Dh = new double[3]; f1Dh[0] = h1h0 * (h0 * (h22 / 3.0 + h0 * h0 / 40.0 * h24)) + Math.log(h1) * f1; f1Dh[1] = h0 * f1 / h1; f1Dh[2] = h1h0 * (h0 * h0 / 6.0 * (2.0 * h2 + h0 * h0 / 5.0 * h23)); f2Dh[0] = Math.log(h1) * f2; f2Dh[1] = h0 * f2 / h1; f2Dh[2] = nu / alpha * h1h0; f3Dh[0] = h0 / 3.0 * alpha * alpha / h12 - 2 * h0 * h0 / 6.0 * alpha * alpha / h12 * Math.log(h1) - rho * beta * nu * alpha / 4.0 / h1h0 * Math.log(h1); f3Dh[1] = -2 * h0 * h0 / 6.0 * alpha * alpha / h12 * h0 / h1 - rho * beta * nu * alpha / 4.0 / h1h0 * h0 / h1; f3Dh[2] = 0.0; double[] f1Dp = new double[4]; // Derivative to sabr parameters double[] f2Dp = new double[4]; double[] f3Dp = new double[4]; double[] f4Dp = new double[4]; f1Dp[0] = 0.0; f1Dp[1] = f1Dh[0] * h0Dbeta; f1Dp[2] = 0.0; f1Dp[3] = 0.0; f2Dp[0] = -f2 / alpha; f2Dp[1] = f2Dh[0] * h0Dbeta; f2Dp[2] = 0.0; f2Dp[3] = h1h0 * h2 / alpha; f3Dp[0] = h0 * h0 / 3.0 * alpha / h12 + rho * beta * nu / 4.0 / h1h0; f3Dp[1] = rho * nu * alpha / 4.0 / h1h0 + f3Dh[0] * h0Dbeta; f3Dp[2] = beta * nu * alpha / 4.0 / h1h0 - rho / 4.0 * nu * nu; f3Dp[3] = rho * beta * alpha / 4.0 / h1h0 + (2 - 3 * rho * rho) / 12.0 * nu; f4Dp[0] = 1.0; f4Dp[1] = 0.0; f4Dp[2] = 0.0; f4Dp[3] = 0.0; double sigmaDh1 = sigmaDf1 * f1Dh[1] + sigmaDf2 * f2Dh[1] + sigmaDf3 * f3Dh[1]; double sigmaDh2 = sigmaDf1 * f1Dh[2] + sigmaDf2 * f2Dh[2] + sigmaDf3 * f3Dh[2]; double[][] f1D2hh = new double[2][2]; // No h0 double[][] f2D2hh = new double[2][2]; double[][] f3D2hh = new double[2][2]; f1D2hh[0][0] = h0 * (h0 - 1) * f1 / (h1 * h1); f1D2hh[0][1] = h0 * h1h0 / h1 * h0 * h0 / 6.0 * (2.0 * h2 + 4.0 * h0 * h0 / 20.0 * h23); f1D2hh[1][1] = h1h0 * (h0 * h0 / 6.0 * (2.0 + 12.0 * h0 * h0 / 20.0 * h2)); f2D2hh[0][0] = h0 * (h0 - 1) * f2 / (h1 * h1); f2D2hh[0][1] = nu / alpha * h0 * h1h0 / h1; f2D2hh[1][1] = 0.0; f3D2hh[0][0] = 2 * h0 * (2 * h0 + 1) * h0 * h0 / 6.0 * alpha * alpha / (h12 * h1 * h1) + h0 * (h0 + 1) * rho * beta * nu * alpha / 4.0 / (h1h0 * h1 * h1); f3D2hh[0][1] = 0.0; f3D2hh[1][1] = 0.0; double[][] sigmaD2hh = new double[2][2]; // No h0 for (int loopx = 0; loopx < 2; loopx++) { for (int loopy = loopx; loopy < 2; loopy++) { sigmaD2hh[loopx][loopy] = (sigmaD2ff[0][0] * f1Dh[loopy + 1] + sigmaD2ff[0][1] * f2Dh[loopy + 1] + sigmaD2ff[0][2] * f3Dh[loopy + 1]) * f1Dh[loopx + 1] + sigmaDf1 * f1D2hh[loopx][loopy] + (sigmaD2ff[0][1] * f1Dh[loopy + 1] + sigmaD2ff[1][1] * f2Dh[loopy + 1] + sigmaD2ff[1][2] * f3Dh[loopy + 1]) * f2Dh[loopx + 1] + sigmaDf2 * f2D2hh[loopx][loopy] + (sigmaD2ff[0][2] * f1Dh[loopy + 1] + sigmaD2ff[1][2] * f2Dh[loopy + 1] + sigmaD2ff[2][2] * f3Dh[loopy + 1]) * f3Dh[loopx + 1] + sigmaDf3 * f3D2hh[loopx][loopy]; } } // Third level double h1Df = k; double h1Dk = forward; double h1D2ff = 0.0; double h1D2kf = 1.0; double h1D2kk = 0.0; double h2Df = 1.0 / forward; double h2Dk = -1.0 / k; double h2D2ff = -1 / (forward * forward); double h2D2fk = 0.0; double h2D2kk = 1.0 / (k * k); volatilityD[0] = sigmaDh1 * h1Df + sigmaDh2 * h2Df; volatilityD[1] = sigmaDh1 * h1Dk + sigmaDh2 * h2Dk; volatilityD[2] = sigmaDf1 * f1Dp[0] + sigmaDf2 * f2Dp[0] + sigmaDf3 * f3Dp[0] + sigmaDf4 * f4Dp[0]; volatilityD[3] = sigmaDf1 * f1Dp[1] + sigmaDf2 * f2Dp[1] + sigmaDf3 * f3Dp[1] + sigmaDf4 * f4Dp[1]; if (nearZero(f2, SMALL_Z)) { volatilityD[4] = -0.5 * f2 + sigmaDf3 * f3Dp[2]; } else { double xDr; if (nearOne(rho, RHO_EPS)) { xDr = f2 > 1.0 ? 1.0 / (1.0 - rho) + (0.5 - f2) / (f2 - 1.0) / (f2 - 1.0) : 0.5 * pow2(f2 / (1.0 - f2)) + 0.25 * (f2 - 4.0) * pow3(f2 / (f2 - 1.0)) / (f2 - 1.0) * (1.0 - rho); if (Doubles.isFinite(xDr)) { volatilityD[4] = sigmaDf1 * f1Dp[2] + sigmaDx * xDr + sigmaDf3 * f3Dp[2] + sigmaDf4 * f4Dp[2]; } else { volatilityD[4] = Double.NEGATIVE_INFINITY; } } else { xDr = (-f2 / sqrtf2 - 1 + (sqrtf2 + f2 - rho) / (1 - rho)) / (sqrtf2 + f2 - rho); volatilityD[4] = sigmaDf1 * f1Dp[2] + sigmaDx * xDr + sigmaDf3 * f3Dp[2] + sigmaDf4 * f4Dp[2]; } } volatilityD[5] = sigmaDf1 * f1Dp[3] + sigmaDf2 * f2Dp[3] + sigmaDf3 * f3Dp[3] + sigmaDf4 * f4Dp[3]; volatilityD2[0][0] = (sigmaD2hh[0][0] * h1Df + sigmaD2hh[0][1] * h2Df) * h1Df + sigmaDh1 * h1D2ff + (sigmaD2hh[0][1] * h1Df + sigmaD2hh[1][1] * h2Df) * h2Df + sigmaDh2 * h2D2ff; volatilityD2[0][1] = (sigmaD2hh[0][0] * h1Dk + sigmaD2hh[0][1] * h2Dk) * h1Df + sigmaDh1 * h1D2kf + (sigmaD2hh[0][1] * h1Dk + sigmaD2hh[1][1] * h2Dk) * h2Df + sigmaDh2 * h2D2fk; volatilityD2[1][0] = volatilityD2[0][1]; volatilityD2[1][1] = (sigmaD2hh[0][0] * h1Dk + sigmaD2hh[0][1] * h2Dk) * h1Dk + sigmaDh1 * h1D2kk + (sigmaD2hh[0][1] * h1Dk + sigmaD2hh[1][1] * h2Dk) * h2Dk + sigmaDh2 * h2D2kk; return sigma; } private double getZOverChi(double rho, double z) { // Implementation comment: To avoid numerical instability (0/0) around ATM the first order approximation is used. if (nearZero(z, SMALL_Z)) { return 1.0 - rho * z / 2.0; } double rhoStar = 1 - rho; if (nearZero(rhoStar, RHO_EPS)) { if (z < 1.0) { return -z / Math.log(1.0d - z); } else { throw new IllegalArgumentException("can't handle z>=1, rho=1"); } } double rhoHat = 1 + rho; if (nearZero(rhoHat, RHO_EPS_NEGATIVE)) { if (z > -1) { return z / Math.log(1 + z); } else if (z < -1) { if (rhoHat == 0) { return 0.0; } double chi = Math.log(rhoHat) - Math.log(-(1 + z) / rhoStar); return z / chi; } else { return 0.0; } } double arg; if (z < LARGE_NEG_Z) { arg = (rho * rho - 1) / 2 / z; //get rounding errors due to fine balanced cancellation for very large negative z } else if (z > LARGE_POS_Z) { arg = 2 * (z - rho); } else { arg = (Math.sqrt(1 - 2 * rho * z + z * z) + z - rho); //Mathematically this cannot be less than zero, but you know what computers are like. if (arg <= 0.0) { return 0.0; } } double chi = Math.log(arg) - Math.log(rhoStar); return z / chi; } @Override public int hashCode() { return toString().hashCode(); } @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (this == obj) { return true; } if (getClass() != obj.getClass()) { return false; } return true; } @Override public String toString() { return "SABR (Hagan)"; } //------------------------- AUTOGENERATED START ------------------------- /** * The meta-bean for {@code SabrHaganVolatilityFunctionProvider}. */ private static final TypedMetaBean META_BEAN = LightMetaBean.of(SabrHaganVolatilityFunctionProvider.class, MethodHandles.lookup()); /** * The meta-bean for {@code SabrHaganVolatilityFunctionProvider}. * @return the meta-bean, not null */ public static TypedMetaBean meta() { return META_BEAN; } static { MetaBean.register(META_BEAN); } /** * The serialization version id. */ private static final long serialVersionUID = 1L; private SabrHaganVolatilityFunctionProvider() { } @Override public TypedMetaBean metaBean() { return META_BEAN; } //----------------------------------------------------------------------- //-------------------------- AUTOGENERATED END -------------------------- }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy