All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.openhtmltopdf.util.PermutationGenerator Maven / Gradle / Ivy

package com.openhtmltopdf.util;


import java.math.BigInteger;

/**
 * The PermutationGenerator Java class systematically generates permutations. It relies on the fact that any set with n
 * elements can be placed in one-to-one correspondence with the set {1, 2, 3, ..., n}. The algorithm is described by
 * Kenneth H. Rosen, Discrete Mathematics and Its Applications, 2nd edition (NY: McGraw-Hill, 1991), pp. 282-284.
 * 

* The class is very easy to use. Suppose that you wish to generate all permutations of the strings "a", "b", "c", and * "d". Put them into an array. Keep calling the permutation generator's {@link #getNext ()} method until there are no * more permutations left. The {@link #getNext ()} method returns an array of integers, which tell you the order in * which to arrange your original array of strings. Here is a snippet of code which illustrates how to use the * PermutationGenerator class. *

 * int[] indices;
 * String[] elements = {"a", "b", "c", "d"};
 * PermutationGenerator x = new PermutationGenerator (elements.length);
 * StringBuffer permutation;
 * while (x.hasMore ()) {
 * permutation = new StringBuffer ();
 * indices = x.getNext ();
 * for (int i = 0; i < indices.length; i++) {
 * permutation.append (elements[indices[i]]);
 * }
 * System.out.println (permutation.toString ());
 * }
 * 
* One caveat. Don't use this class on large sets. Recall that the number of permutations of a set containing n elements * is n factorial, which is a very large number even when n is as small as 20. 20! is 2,432,902,008,176,640,000. *

* NOTE: This class was taken from the internet, as posted by Michael Gilleland on this website. The code was posted with the following comment: "The * source code is free for you to use in whatever way you wish." * * @author Michael Gilleland, Merriam Park Software (http://www.merriampark.com/index.htm) */ public class PermutationGenerator { private int[] a; private BigInteger numLeft; private BigInteger total; //----------------------------------------------------------- // Constructor. WARNING: Don't make n too large. // Recall that the number of permutations is n! // which can be very large, even when n is as small as 20 -- // 20! = 2,432,902,008,176,640,000 and // 21! is too big to fit into a Java long, which is // why we use BigInteger instead. //---------------------------------------------------------- public PermutationGenerator(int n) { if (n < 1) { throw new IllegalArgumentException("Min 1"); } a = new int[n]; total = getFactorial(n); reset(); } //------ // Reset //------ public void reset() { for (int i = 0; i < a.length; i++) { a[i] = i; } numLeft = new BigInteger(total.toString()); } //------------------------------------------------ // Return number of permutations not yet generated //------------------------------------------------ public BigInteger getNumLeft() { return numLeft; } //------------------------------------ // Return total number of permutations //------------------------------------ public BigInteger getTotal() { return total; } //----------------------------- // Are there more permutations? //----------------------------- public boolean hasMore() { return numLeft.compareTo(BigInteger.ZERO) == 1; } //------------------ // Compute factorial //------------------ private static BigInteger getFactorial(int n) { BigInteger fact = BigInteger.ONE; for (int i = n; i > 1; i--) { fact = fact.multiply(new BigInteger(Integer.toString(i))); } return fact; } //-------------------------------------------------------- // Generate next permutation (algorithm from Rosen p. 284) //-------------------------------------------------------- public int[] getNext() { if (numLeft.equals(total)) { numLeft = numLeft.subtract(BigInteger.ONE); return ArrayUtil.cloneOrEmpty(a); } int temp; // Find largest index j with a[j] < a[j+1] int j = a.length - 2; while (a[j] > a[j + 1]) { j--; } // Find index k such that a[k] is smallest integer // greater than a[j] to the right of a[j] int k = a.length - 1; while (a[j] > a[k]) { k--; } // Interchange a[j] and a[k] temp = a[k]; a[k] = a[j]; a[j] = temp; // Put tail end of permutation after jth position in increasing order int r = a.length - 1; int s = j + 1; while (r > s) { temp = a[s]; a[s] = a[r]; a[r] = temp; r--; s++; } numLeft = numLeft.subtract(BigInteger.ONE); return ArrayUtil.cloneOrEmpty(a); } } // end class





© 2015 - 2024 Weber Informatics LLC | Privacy Policy