All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.oracle.bmc.generativeai.model.TrainingConfig Maven / Gradle / Ivy

There is a newer version: 3.53.1
Show newest version
/**
 * Copyright (c) 2016, 2024, Oracle and/or its affiliates.  All rights reserved.
 * This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
 */
package com.oracle.bmc.generativeai.model;

/**
 * The fine-tuning method and hyperparameters used for fine-tuning a custom model. 
* Note: Objects should always be created or deserialized using the {@link Builder}. This model * distinguishes fields that are {@code null} because they are unset from fields that are explicitly * set to {@code null}. This is done in the setter methods of the {@link Builder}, which maintain a * set of all explicitly set fields called {@link Builder#__explicitlySet__}. The {@link * #hashCode()} and {@link #equals(Object)} methods are implemented to take the explicitly set * fields into account. The constructor, on the other hand, does not take the explicitly set fields * into account (since the constructor cannot distinguish explicit {@code null} from unset {@code * null}). */ @jakarta.annotation.Generated(value = "OracleSDKGenerator", comments = "API Version: 20231130") @com.fasterxml.jackson.annotation.JsonTypeInfo( use = com.fasterxml.jackson.annotation.JsonTypeInfo.Id.NAME, include = com.fasterxml.jackson.annotation.JsonTypeInfo.As.PROPERTY, property = "trainingConfigType", defaultImpl = TrainingConfig.class) @com.fasterxml.jackson.annotation.JsonSubTypes({ @com.fasterxml.jackson.annotation.JsonSubTypes.Type( value = LoraTrainingConfig.class, name = "LORA_TRAINING_CONFIG"), @com.fasterxml.jackson.annotation.JsonSubTypes.Type( value = VanillaTrainingConfig.class, name = "VANILLA_TRAINING_CONFIG"), @com.fasterxml.jackson.annotation.JsonSubTypes.Type( value = TFewTrainingConfig.class, name = "TFEW_TRAINING_CONFIG") }) @com.fasterxml.jackson.annotation.JsonFilter( com.oracle.bmc.http.client.internal.ExplicitlySetBmcModel.EXPLICITLY_SET_FILTER_NAME) public class TrainingConfig extends com.oracle.bmc.http.client.internal.ExplicitlySetBmcModel { @Deprecated @java.beans.ConstructorProperties({ "totalTrainingEpochs", "learningRate", "trainingBatchSize", "earlyStoppingPatience", "earlyStoppingThreshold", "logModelMetricsIntervalInSteps" }) protected TrainingConfig( Integer totalTrainingEpochs, Double learningRate, Integer trainingBatchSize, Integer earlyStoppingPatience, Double earlyStoppingThreshold, Integer logModelMetricsIntervalInSteps) { super(); this.totalTrainingEpochs = totalTrainingEpochs; this.learningRate = learningRate; this.trainingBatchSize = trainingBatchSize; this.earlyStoppingPatience = earlyStoppingPatience; this.earlyStoppingThreshold = earlyStoppingThreshold; this.logModelMetricsIntervalInSteps = logModelMetricsIntervalInSteps; } /** The maximum number of training epochs to run for. */ @com.fasterxml.jackson.annotation.JsonProperty("totalTrainingEpochs") private final Integer totalTrainingEpochs; /** * The maximum number of training epochs to run for. * * @return the value */ public Integer getTotalTrainingEpochs() { return totalTrainingEpochs; } /** The initial learning rate to be used during training */ @com.fasterxml.jackson.annotation.JsonProperty("learningRate") private final Double learningRate; /** * The initial learning rate to be used during training * * @return the value */ public Double getLearningRate() { return learningRate; } /** The batch size used during training. */ @com.fasterxml.jackson.annotation.JsonProperty("trainingBatchSize") private final Integer trainingBatchSize; /** * The batch size used during training. * * @return the value */ public Integer getTrainingBatchSize() { return trainingBatchSize; } /** * Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this * many times of evaluation. */ @com.fasterxml.jackson.annotation.JsonProperty("earlyStoppingPatience") private final Integer earlyStoppingPatience; /** * Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this * many times of evaluation. * * @return the value */ public Integer getEarlyStoppingPatience() { return earlyStoppingPatience; } /** How much the loss must improve to prevent early stopping. */ @com.fasterxml.jackson.annotation.JsonProperty("earlyStoppingThreshold") private final Double earlyStoppingThreshold; /** * How much the loss must improve to prevent early stopping. * * @return the value */ public Double getEarlyStoppingThreshold() { return earlyStoppingThreshold; } /** * Determines how frequently to log model metrics. * *

Every step is logged for the first 20 steps and then follows this parameter for log * frequency. Set to 0 to disable logging the model metrics. */ @com.fasterxml.jackson.annotation.JsonProperty("logModelMetricsIntervalInSteps") private final Integer logModelMetricsIntervalInSteps; /** * Determines how frequently to log model metrics. * *

Every step is logged for the first 20 steps and then follows this parameter for log * frequency. Set to 0 to disable logging the model metrics. * * @return the value */ public Integer getLogModelMetricsIntervalInSteps() { return logModelMetricsIntervalInSteps; } @Override public String toString() { return this.toString(true); } /** * Return a string representation of the object. * * @param includeByteArrayContents true to include the full contents of byte arrays * @return string representation */ public String toString(boolean includeByteArrayContents) { java.lang.StringBuilder sb = new java.lang.StringBuilder(); sb.append("TrainingConfig("); sb.append("super=").append(super.toString()); sb.append("totalTrainingEpochs=").append(String.valueOf(this.totalTrainingEpochs)); sb.append(", learningRate=").append(String.valueOf(this.learningRate)); sb.append(", trainingBatchSize=").append(String.valueOf(this.trainingBatchSize)); sb.append(", earlyStoppingPatience=").append(String.valueOf(this.earlyStoppingPatience)); sb.append(", earlyStoppingThreshold=").append(String.valueOf(this.earlyStoppingThreshold)); sb.append(", logModelMetricsIntervalInSteps=") .append(String.valueOf(this.logModelMetricsIntervalInSteps)); sb.append(")"); return sb.toString(); } @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof TrainingConfig)) { return false; } TrainingConfig other = (TrainingConfig) o; return java.util.Objects.equals(this.totalTrainingEpochs, other.totalTrainingEpochs) && java.util.Objects.equals(this.learningRate, other.learningRate) && java.util.Objects.equals(this.trainingBatchSize, other.trainingBatchSize) && java.util.Objects.equals(this.earlyStoppingPatience, other.earlyStoppingPatience) && java.util.Objects.equals( this.earlyStoppingThreshold, other.earlyStoppingThreshold) && java.util.Objects.equals( this.logModelMetricsIntervalInSteps, other.logModelMetricsIntervalInSteps) && super.equals(other); } @Override public int hashCode() { final int PRIME = 59; int result = 1; result = (result * PRIME) + (this.totalTrainingEpochs == null ? 43 : this.totalTrainingEpochs.hashCode()); result = (result * PRIME) + (this.learningRate == null ? 43 : this.learningRate.hashCode()); result = (result * PRIME) + (this.trainingBatchSize == null ? 43 : this.trainingBatchSize.hashCode()); result = (result * PRIME) + (this.earlyStoppingPatience == null ? 43 : this.earlyStoppingPatience.hashCode()); result = (result * PRIME) + (this.earlyStoppingThreshold == null ? 43 : this.earlyStoppingThreshold.hashCode()); result = (result * PRIME) + (this.logModelMetricsIntervalInSteps == null ? 43 : this.logModelMetricsIntervalInSteps.hashCode()); result = (result * PRIME) + super.hashCode(); return result; } /** The fine-tuning method for training a custom model. */ public enum TrainingConfigType implements com.oracle.bmc.http.internal.BmcEnum { TfewTrainingConfig("TFEW_TRAINING_CONFIG"), VanillaTrainingConfig("VANILLA_TRAINING_CONFIG"), LoraTrainingConfig("LORA_TRAINING_CONFIG"), /** * This value is used if a service returns a value for this enum that is not recognized by * this version of the SDK. */ UnknownEnumValue(null); private static final org.slf4j.Logger LOG = org.slf4j.LoggerFactory.getLogger(TrainingConfigType.class); private final String value; private static java.util.Map map; static { map = new java.util.HashMap<>(); for (TrainingConfigType v : TrainingConfigType.values()) { if (v != UnknownEnumValue) { map.put(v.getValue(), v); } } } TrainingConfigType(String value) { this.value = value; } @com.fasterxml.jackson.annotation.JsonValue public String getValue() { return value; } @com.fasterxml.jackson.annotation.JsonCreator public static TrainingConfigType create(String key) { if (map.containsKey(key)) { return map.get(key); } LOG.warn( "Received unknown value '{}' for enum 'TrainingConfigType', returning UnknownEnumValue", key); return UnknownEnumValue; } }; }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy