All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.oracle.truffle.api.ExactMath Maven / Gradle / Ivy

Go to download

Truffle is a multi-language framework for executing dynamic languages that achieves high performance when combined with Graal.

There is a newer version: 1.0.0-rc7
Show newest version
/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package com.oracle.truffle.api;

/**
 * This class contains methods that will be part of java.lang.Math starting with JDK 8. Until JDK 8
 * is release, we duplicate them here because they are generally useful for dynamic language
 * implementations.
 * 
 * @since 0.8 or earlier
 */
public class ExactMath {
    /**
     * @deprecated accidentally public - don't use
     * @since 0.8 or earlier
     */
    @Deprecated
    public ExactMath() {
    }

    /** @since 0.8 or earlier */
    public static int addExact(int x, int y) {
        int r = x + y;
        // HD 2-12 Overflow iff both arguments have the opposite sign of the result
        if (((x ^ r) & (y ^ r)) < 0) {
            throw new ArithmeticException("integer overflow");
        }
        return r;
    }

    /** @since 0.8 or earlier */
    public static long addExact(long x, long y) {
        long r = x + y;
        // HD 2-12 Overflow iff both arguments have the opposite sign of the result
        if (((x ^ r) & (y ^ r)) < 0) {
            throw new ArithmeticException("long overflow");
        }
        return r;
    }

    /** @since 0.8 or earlier */
    public static int subtractExact(int x, int y) {
        int r = x - y;
        // HD 2-12 Overflow iff the arguments have different signs and
        // the sign of the result is different than the sign of x
        if (((x ^ y) & (x ^ r)) < 0) {
            throw new ArithmeticException("integer overflow");
        }
        return r;
    }

    /** @since 0.8 or earlier */
    public static long subtractExact(long x, long y) {
        long r = x - y;
        // HD 2-12 Overflow iff the arguments have different signs and
        // the sign of the result is different than the sign of x
        if (((x ^ y) & (x ^ r)) < 0) {
            throw new ArithmeticException("long overflow");
        }
        return r;
    }

    /** @since 0.8 or earlier */
    public static int multiplyExact(int x, int y) {
        long r = (long) x * (long) y;
        if ((int) r != r) {
            throw new ArithmeticException("long overflow");
        }
        return (int) r;
    }

    /** @since 0.8 or earlier */
    public static long multiplyExact(long x, long y) {
        long r = x * y;
        long ax = Math.abs(x);
        long ay = Math.abs(y);
        if (((ax | ay) >>> 31 != 0)) {
            // Some bits greater than 2^31 that might cause overflow
            // Check the result using the divide operator
            // and check for the special case of Long.MIN_VALUE * -1
            if (((y != 0) && (r / y != x)) || (x == Long.MIN_VALUE && y == -1)) {
                throw new ArithmeticException("long overflow");
            }
        }
        return r;
    }

    /** @since 0.8 or earlier */
    public static int multiplyHigh(int x, int y) {
        long r = (long) x * (long) y;
        return (int) (r >> 32);
    }

    /** @since 0.8 or earlier */
    public static int multiplyHighUnsigned(int x, int y) {
        long xl = x & 0xFFFFFFFFL;
        long yl = y & 0xFFFFFFFFL;
        long r = xl * yl;
        return (int) (r >> 32);
    }

    /** @since 0.8 or earlier */
    public static long multiplyHigh(long x, long y) {
        // Checkstyle: stop
        long x0, y0, z0;
        long x1, y1, z1, z2, t;
        // Checkstyle: resume

        x0 = x & 0xFFFFFFFFL;
        x1 = x >> 32;

        y0 = y & 0xFFFFFFFFL;
        y1 = y >> 32;

        z0 = x0 * y0;
        t = x1 * y0 + (z0 >>> 32);
        z1 = t & 0xFFFFFFFFL;
        z2 = t >> 32;
        z1 += x0 * y1;

        return x1 * y1 + z2 + (z1 >> 32);
    }

    /** @since 0.8 or earlier */
    public static long multiplyHighUnsigned(long x, long y) {
        // Checkstyle: stop
        long x0, y0, z0;
        long x1, y1, z1, z2, t;
        // Checkstyle: resume

        x0 = x & 0xFFFFFFFFL;
        x1 = x >>> 32;

        y0 = y & 0xFFFFFFFFL;
        y1 = y >>> 32;

        z0 = x0 * y0;
        t = x1 * y0 + (z0 >>> 32);
        z1 = t & 0xFFFFFFFFL;
        z2 = t >>> 32;
        z1 += x0 * y1;

        return x1 * y1 + z2 + (z1 >>> 32);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy