com.google.common.collect.FluentIterable Maven / Gradle / Ivy
/*
* Copyright (C) 2008 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Function;
import com.google.common.base.Optional;
import com.google.common.base.Preconditions;
import com.google.common.base.Predicate;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.SortedSet;
import javax.annotation.Nullable;
/**
* {@code FluentIterable} provides a rich interface for manipulating {@code Iterable}s in a chained
* fashion. A {@code FluentIterable} can be created from an {@code Iterable}, or from a set of
* elements. The following types of methods are provided on {@code FluentIterable}:
*
* - chained methods which return a new {@code FluentIterable} based in some way on the contents
* of the current one (for example {@link #transform})
*
- conversion methods which copy the {@code FluentIterable}'s contents into a new collection or
* array (for example {@link #toImmutableList})
*
- element extraction methods which facilitate the retrieval of certain elements (for example
* {@link #last})
*
- query methods which answer questions about the {@code FluentIterable}'s contents (for example
* {@link #anyMatch})
*
*
* Here is an example that merges the lists returned by two separate database calls, transforms
* it by invoking {@code toString()} on each element, and returns the first 10 elements as an
* {@code ImmutableList}:
{@code
*
* FluentIterable
* .from(database.getClientList())
* .transform(Functions.toStringFunction())
* .limit(10)
* .toImmutableList();}
*
* Anything which can be done using {@code FluentIterable} could be done in a different fashion
* (often with {@link Iterables}), however the use of {@code FluentIterable} makes many sets of
* operations significantly more concise.
*
* @author Marcin Mikosik
* @since 12.0
*/
@Beta
@GwtCompatible(emulated = true)
public abstract class FluentIterable implements Iterable {
// We store 'iterable' and use it instead of 'this' to allow Iterables to perform instanceof
// checks on the _original_ iterable when FluentIterable.from is used.
private final Iterable iterable;
/** Constructor for use by subclasses. */
protected FluentIterable() {
this.iterable = this;
}
FluentIterable(Iterable iterable) {
this.iterable = Preconditions.checkNotNull(iterable);
}
/**
* Returns a fluent iterable that wraps {@code iterable}, or {@code iterable} itself if it
* is already a {@code FluentIterable}.
*/
public static FluentIterable from(final Iterable iterable) {
return (iterable instanceof FluentIterable) ? (FluentIterable) iterable
: new FluentIterable(iterable) {
@Override
public Iterator iterator() {
return iterable.iterator();
}
};
}
/**
* Construct a fluent iterable from another fluent iterable. This is obviously never necessary,
* but is intended to help call out cases where one migration from {@code Iterable} to
* {@code FluentIterable} has obviated the need to explicitly convert to a {@code FluentIterable}.
*
* @deprecated instances of {@code FluentIterable} don't need to be converted to
* {@code FluentIterable}
*/
@Deprecated
public static FluentIterable from(FluentIterable iterable) {
return Preconditions.checkNotNull(iterable);
}
/**
* Returns a string representation of this fluent iterable, with the format
* {@code [e1, e2, ..., en]}.
*/
@Override
public String toString() {
return Iterables.toString(iterable);
}
/**
* Returns the number of elements in this fluent iterable.
*/
public final int size() {
return Iterables.size(iterable);
}
/**
* Returns {@code true} if this fluent iterable contains any object for which
* {@code equals(element)} is true.
*/
public final boolean contains(@Nullable Object element) {
return Iterables.contains(iterable, element);
}
/**
* Returns a fluent iterable whose {@code Iterator} cycles indefinitely over the elements of
* this fluent iterable.
*
* That iterator supports {@code remove()} if {@code iterable.iterator()} does. After
* {@code remove()} is called, subsequent cycles omit the removed element, which is no longer in
* this fluent iterable. The iterator's {@code hasNext()} method returns {@code true} until
* this fluent iterable is empty.
*
*
Warning: Typical uses of the resulting iterator may produce an infinite loop. You
* should use an explicit {@code break} or be certain that you will eventually remove all the
* elements.
*/
public final FluentIterable cycle() {
return from(Iterables.cycle(iterable));
}
/**
* Returns the elements from this fluent iterable that satisfy a predicate. The
* resulting fluent iterable's iterator does not support {@code remove()}.
*/
public final FluentIterable filter(Predicate super E> predicate) {
return from(Iterables.filter(iterable, predicate));
}
/**
* Returns the elements from this fluent iterable that are instances of class {@code type}.
*
* @param type the type of elements desired
*/
@GwtIncompatible("Class.isInstance")
public final FluentIterable filter(Class type) {
return from(Iterables.filter(iterable, type));
}
/**
* Returns {@code true} if any element in this fluent iterable satisfies the predicate.
*/
public final boolean anyMatch(Predicate super E> predicate) {
return Iterables.any(iterable, predicate);
}
/**
* Returns {@code true} if every element in this fluent iterable satisfies the predicate.
* If this fluent iterable is empty, {@code true} is returned.
*/
public final boolean allMatch(Predicate super E> predicate) {
return Iterables.all(iterable, predicate);
}
/**
* Returns an {@link Optional} containing the first element in this fluent iterable that
* satisfies the given predicate, if such an element exists.
*
* Warning: avoid using a {@code predicate} that matches {@code null}. If {@code null}
* is matched in this fluent iterable, a {@link NullPointerException} will be thrown.
*/
public final Optional firstMatch(Predicate super E> predicate) {
return Iterables.tryFind(iterable, predicate);
}
/**
* Returns a fluent iterable that applies {@code function} to each element of this
* fluent iterable.
*
* The returned fluent iterable's iterator supports {@code remove()} if this iterable's
* iterator does. After a successful {@code remove()} call, this fluent iterable no longer
* contains the corresponding element.
*/
public final FluentIterable transform(Function super E, T> function) {
return from(Iterables.transform(iterable, function));
}
/**
* Returns an {@link Optional} containing the first element in this fluent iterable.
* If the iterable is empty, {@code Optional.absent()} is returned.
*
* @throws NullPointerException if the first element is null; if this is a possibility, use
* {@code iterator().next()} or {@link Iterables#getFirst} instead.
*/
public final Optional first() {
Iterator iterator = iterable.iterator();
return iterator.hasNext()
? Optional.of(iterator.next())
: Optional.absent();
}
/**
* Returns an {@link Optional} containing the last element in this fluent iterable.
* If the iterable is empty, {@code Optional.absent()} is returned.
*
* @throws NullPointerException if the last element is null; if this is a possibility, use
* {@link Iterables#getLast} instead.
*/
public final Optional last() {
// Iterables#getLast was inlined here so we don't have to throw/catch a NSEE
// TODO(kevinb): Support a concurrently modified collection?
if (iterable instanceof List) {
List list = (List) iterable;
if (list.isEmpty()) {
return Optional.absent();
}
return Optional.of(list.get(list.size() - 1));
}
Iterator iterator = iterable.iterator();
if (!iterator.hasNext()) {
return Optional.absent();
}
/*
* TODO(kevinb): consider whether this "optimization" is worthwhile. Users
* with SortedSets tend to know they are SortedSets and probably would not
* call this method.
*/
if (iterable instanceof SortedSet) {
SortedSet sortedSet = (SortedSet) iterable;
return Optional.of(sortedSet.last());
}
while (true) {
E current = iterator.next();
if (!iterator.hasNext()) {
return Optional.of(current);
}
}
}
/**
* Returns a view of this fluent iterable that skips its first {@code numberToSkip}
* elements. If this fluent iterable contains fewer than {@code numberToSkip} elements,
* the returned fluent iterable skips all of its elements.
*
* Modifications to this fluent iterable before a call to {@code iterator()} are
* reflected in the returned fluent iterable. That is, the its iterator skips the first
* {@code numberToSkip} elements that exist when the iterator is created, not when {@code skip()}
* is called.
*
*
The returned fluent iterable's iterator supports {@code remove()} if the
* {@code Iterator} of this fluent iterable supports it. Note that it is not
* possible to delete the last skipped element by immediately calling {@code remove()} on the
* returned fluent iterable's iterator, as the {@code Iterator} contract states that a call
* to {@code * remove()} before a call to {@code next()} will throw an
* {@link IllegalStateException}.
*/
public final FluentIterable skip(int numberToSkip) {
return from(Iterables.skip(iterable, numberToSkip));
}
/**
* Creates a fluent iterable with the first {@code size} elements of this
* fluent iterable. If this fluent iterable does not contain that many elements,
* the returned fluent iterable will have the same behavior as this fluent iterable.
* The returned fluent iterable's iterator supports {@code remove()} if this
* fluent iterable's iterator does.
*
* @param size the maximum number of elements in the returned fluent iterable
* @throws IllegalArgumentException if {@code size} is negative
*/
public final FluentIterable limit(int size) {
return from(Iterables.limit(iterable, size));
}
/**
* Determines whether this fluent iterable is empty.
*/
public final boolean isEmpty() {
return !iterable.iterator().hasNext();
}
/**
* Returns an {@code ImmutableList} containing all of the elements from this
* fluent iterable in proper sequence.
*/
public final ImmutableList toImmutableList() {
return ImmutableList.copyOf(iterable);
}
/**
* Returns an {@code ImmutableSet} containing all of the elements from this
* fluent iterable with duplicates removed.
*/
public final ImmutableSet toImmutableSet() {
return ImmutableSet.copyOf(iterable);
}
/**
* Returns an {@code ImmutableSortedSet} containing all of the elements from this
* {@code FluentIterable} in the order specified by {@code comparator}, with duplicates
* (determined by {@code comaprator.compare(x, y) == 0}) removed. To produce an
* {@code ImmutableSortedSet} sorted by its natural ordering, use
* {@code toImmutableSortedSet(Ordering.natural())}.
*
* @param comparator the function by which to sort set elements
* @throws NullPointerException if any element is null
*/
public final ImmutableSortedSet toImmutableSortedSet(Comparator super E> comparator) {
return ImmutableSortedSet.copyOf(comparator, iterable);
}
/**
* Returns an array containing all of the elements from this fluent iterable in iteration order.
*
* @param type the type of the elements
* @return a newly-allocated array into which all the elements of this fluent iterable have
* been copied
*/
@GwtIncompatible("Array.newArray(Class, int)")
public final E[] toArray(Class type) {
return Iterables.toArray(iterable, type);
}
/**
* Returns the element at the specified position in this fluent iterable.
*
* @param position position of the element to return
* @return the element at the specified position in this fluent iterable
* @throws IndexOutOfBoundsException if {@code position} is negative or greater than or equal to
* the size of this fluent iterable
*/
public final E get(int position) {
return Iterables.get(iterable, position);
}
/**
* Function that transforms {@code Iterable} into a fluent iterable.
*/
private static class FromIterableFunction
implements Function, FluentIterable> {
@Override
public FluentIterable apply(Iterable fromObject) {
return FluentIterable.from(fromObject);
}
}
}