All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.primitives.UnsignedBytes Maven / Gradle / Ivy

There is a newer version: 3.9
Show newest version
/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.VisibleForTesting;

import sun.misc.Unsafe;

import java.lang.reflect.Field;
import java.nio.ByteOrder;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Comparator;

/**
 * Static utility methods pertaining to {@code byte} primitives that interpret
 * values as unsigned (that is, any negative value {@code b} is treated
 * as the positive value {@code 256 + b}). The corresponding methods that treat
 * the values as signed are found in {@link SignedBytes}, and the methods for
 * which signedness is not an issue are in {@link Bytes}.
 * 
 * 

See the Guava User Guide article on * primitive utilities. * * @author Kevin Bourrillion * @author Martin Buchholz * @author Hiroshi Yamauchi * @since 1.0 */ public final class UnsignedBytes { private UnsignedBytes() {} /** * The largest power of two that can be represented as an unsigned {@code byte}. * * @since 10.0 */ public static final byte MAX_POWER_OF_TWO = (byte) (1 << 7); /** * Returns the value of the given byte as an integer, when treated as * unsigned. That is, returns {@code value + 256} if {@code value} is * negative; {@code value} itself otherwise. * * @since 6.0 */ public static int toInt(byte value) { return value & 0xFF; } /** * Returns the {@code byte} value that, when treated as unsigned, is equal to * {@code value}, if possible. * * @param value a value between 0 and 255 inclusive * @return the {@code byte} value that, when treated as unsigned, equals * {@code value} * @throws IllegalArgumentException if {@code value} is negative or greater * than 255 */ public static byte checkedCast(long value) { checkArgument(value >> 8 == 0, "out of range: %s", value); return (byte) value; } /** * Returns the {@code byte} value that, when treated as unsigned, is nearest * in value to {@code value}. * * @param value any {@code long} value * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise */ public static byte saturatedCast(long value) { if (value > 255) { return (byte) 255; // -1 } if (value < 0) { return (byte) 0; } return (byte) value; } /** * Compares the two specified {@code byte} values, treating them as unsigned * values between 0 and 255 inclusive. For example, {@code (byte) -127} is * considered greater than {@code (byte) 127} because it is seen as having * the value of positive {@code 129}. * * @param a the first {@code byte} to compare * @param b the second {@code byte} to compare * @return a negative value if {@code a} is less than {@code b}; a positive * value if {@code a} is greater than {@code b}; or zero if they are equal */ public static int compare(byte a, byte b) { return toInt(a) - toInt(b); } /** * Returns the least value present in {@code array}. * * @param array a nonempty array of {@code byte} values * @return the value present in {@code array} that is less than or equal to * every other value in the array * @throws IllegalArgumentException if {@code array} is empty */ public static byte min(byte... array) { checkArgument(array.length > 0); int min = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next < min) { min = next; } } return (byte) min; } /** * Returns the greatest value present in {@code array}. * * @param array a nonempty array of {@code byte} values * @return the value present in {@code array} that is greater than or equal * to every other value in the array * @throws IllegalArgumentException if {@code array} is empty */ public static byte max(byte... array) { checkArgument(array.length > 0); int max = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next > max) { max = next; } } return (byte) max; } /** * Returns a string containing the supplied {@code byte} values separated by * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, * (byte) 255)} returns the string {@code "1:2:255"}. * * @param separator the text that should appear between consecutive values in * the resulting string (but not at the start or end) * @param array an array of {@code byte} values, possibly empty */ public static String join(String separator, byte... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 5); builder.append(toInt(array[0])); for (int i = 1; i < array.length; i++) { builder.append(separator).append(toInt(array[i])); } return builder.toString(); } /** * Returns a comparator that compares two {@code byte} arrays * lexicographically. That is, it compares, using {@link * #compare(byte, byte)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. * *

The returned comparator is inconsistent with {@link * Object#equals(Object)} (since arrays support only identity equality), but * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. * * @see * Lexicographical order article at Wikipedia * @since 2.0 */ public static Comparator lexicographicalComparator() { return LexicographicalComparatorHolder.BEST_COMPARATOR; } @VisibleForTesting static Comparator lexicographicalComparatorJavaImpl() { return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; } /** * Provides a lexicographical comparator implementation; either a Java * implementation or a faster implementation based on {@link Unsafe}. * *

Uses reflection to gracefully fall back to the Java implementation if * {@code Unsafe} isn't available. */ @VisibleForTesting static class LexicographicalComparatorHolder { static final String UNSAFE_COMPARATOR_NAME = LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; static final Comparator BEST_COMPARATOR = getBestComparator(); @VisibleForTesting enum UnsafeComparator implements Comparator { INSTANCE; static final boolean littleEndian = ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); /* * The following static final fields exist for performance reasons. * * In UnsignedBytesBenchmark, accessing the following objects via static * final fields is the fastest (more than twice as fast as the Java * implementation, vs ~1.5x with non-final static fields, on x86_32) * under the Hotspot server compiler. The reason is obviously that the * non-final fields need to be reloaded inside the loop. * * And, no, defining (final or not) local variables out of the loop still * isn't as good because the null check on the theUnsafe object remains * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get * constant-folded. * * The compiler can treat static final fields as compile-time constants * and can constant-fold them while (final or not) local variables are * run time values. */ static final Unsafe theUnsafe; /** The offset to the first element in a byte array. */ static final int BYTE_ARRAY_BASE_OFFSET; static { theUnsafe = (Unsafe) AccessController.doPrivileged( new PrivilegedAction() { @Override public Object run() { try { Field f = Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); return f.get(null); } catch (NoSuchFieldException e) { // It doesn't matter what we throw; // it's swallowed in getBestComparator(). throw new Error(); } catch (IllegalAccessException e) { throw new Error(); } } }); BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); // sanity check - this should never fail if (theUnsafe.arrayIndexScale(byte[].class) != 1) { throw new AssertionError(); } } @Override public int compare(byte[] left, byte[] right) { int minLength = Math.min(left.length, right.length); int minWords = minLength / Longs.BYTES; /* * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a * time is no slower than comparing 4 bytes at a time even on 32-bit. * On the other hand, it is substantially faster on 64-bit. */ for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); long diff = lw ^ rw; if (diff != 0) { if (!littleEndian) { return UnsignedLongs.compare(lw, rw); } // Use binary search int n = 0; int y; int x = (int) diff; if (x == 0) { x = (int) (diff >>> 32); n = 32; } y = x << 16; if (y == 0) { n += 16; } else { x = y; } y = x << 8; if (y == 0) { n += 8; } return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL)); } } // The epilogue to cover the last (minLength % 8) elements. for (int i = minWords * Longs.BYTES; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } } enum PureJavaComparator implements Comparator { INSTANCE; @Override public int compare(byte[] left, byte[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } } /** * Returns the Unsafe-using Comparator, or falls back to the pure-Java * implementation if unable to do so. */ static Comparator getBestComparator() { try { Class theClass = Class.forName(UNSAFE_COMPARATOR_NAME); // yes, UnsafeComparator does implement Comparator @SuppressWarnings("unchecked") Comparator comparator = (Comparator) theClass.getEnumConstants()[0]; return comparator; } catch (Throwable t) { // ensure we really catch *everything* return lexicographicalComparatorJavaImpl(); } } } }