All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.hash.Hashing Maven / Gradle / Ivy

There is a newer version: 3.9
Show newest version
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.hash;

import static com.google.common.base.Preconditions.checkArgument;

import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Supplier;

import java.nio.ByteBuffer;
import java.security.MessageDigest;
import java.util.Iterator;
import java.util.zip.Adler32;
import java.util.zip.CRC32;
import java.util.zip.Checksum;

/**
 * Static methods to obtain {@link HashFunction} instances, and other static hashing-related
 * utilities.
 *
 * @author Kevin Bourrillion
 * @author Dimitris Andreou
 * @author Kurt Alfred Kluever
 * @since 11.0
 */
@Beta
public final class Hashing {
  private Hashing() {}

  /**
   * Used to randomize {@link #goodFastHash} instances, so that programs which persist anything
   * dependent on hashcodes of those, will fail sooner than later.
   */
  private static final int GOOD_FAST_HASH_SEED = (int) System.currentTimeMillis();

  // Used by goodFastHash when minimumBits == 32.
  private static final HashFunction GOOD_FAST_HASH_FUNCTION_32 = murmur3_32(GOOD_FAST_HASH_SEED);

  // Used by goodFastHash when 32 < minimumBits <= 128.
  private static final HashFunction GOOD_FAST_HASH_FUNCTION_128 = murmur3_128(GOOD_FAST_HASH_SEED);

  /**
   * Returns a general-purpose, non-cryptographic-strength, streaming hash function that
   * produces hash codes of length at least {@code minimumBits}. Users without specific
   * compatibility requirements and who do not persist the hash codes are encouraged to
   * choose this hash function.
   *
   * 

Repeated calls to {@link #goodFastHash} with the same {@code minimumBits} value will * return {@link HashFunction} instances with identical behavior (but not necessarily the * same instance) for the duration of the current virtual machine. * *

Warning: the implementation is unspecified and is subject to change. * * @throws IllegalArgumentException if {@code minimumBits} is not positive */ public static HashFunction goodFastHash(int minimumBits) { int bits = checkPositiveAndMakeMultipleOf32(minimumBits); if (bits == 32) { return GOOD_FAST_HASH_FUNCTION_32; } if (bits <= 128) { return GOOD_FAST_HASH_FUNCTION_128; } // Otherwise, join together some 128-bit murmur3s int hashFunctionsNeeded = (bits + 127) / 128; HashFunction[] hashFunctions = new HashFunction[hashFunctionsNeeded]; hashFunctions[0] = GOOD_FAST_HASH_FUNCTION_128; int seed = GOOD_FAST_HASH_SEED; for (int i = 1; i < hashFunctionsNeeded; i++) { seed += 1500450271; // a prime; shouldn't matter hashFunctions[i] = murmur3_128(seed); } return new ConcatenatedHashFunction(hashFunctions); } /** * Returns a hash function implementing the * * 32-bit murmur3 algorithm, x86 variant (little-endian variant), * using the given seed value. * *

The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). */ public static HashFunction murmur3_32(int seed) { return new Murmur3_32HashFunction(seed); } /** * Returns a hash function implementing the * * 32-bit murmur3 algorithm, x86 variant (little-endian variant), * using a seed value of zero. * *

The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). */ public static HashFunction murmur3_32() { return MURMUR3_32; } private static final HashFunction MURMUR3_32 = new Murmur3_32HashFunction(0); /** * Returns a hash function implementing the * * 128-bit murmur3 algorithm, x64 variant (little-endian variant), * using the given seed value. * *

The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). */ public static HashFunction murmur3_128(int seed) { return new Murmur3_128HashFunction(seed); } /** * Returns a hash function implementing the * * 128-bit murmur3 algorithm, x64 variant (little-endian variant), * using a seed value of zero. * *

The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). */ public static HashFunction murmur3_128() { return MURMUR3_128; } private static final HashFunction MURMUR3_128 = new Murmur3_128HashFunction(0); /** * Returns a hash function implementing the MD5 hash algorithm (128 hash bits) by delegating to * the MD5 {@link MessageDigest}. */ public static HashFunction md5() { return MD5; } private static final HashFunction MD5 = new MessageDigestHashFunction("MD5", "Hashing.md5()"); /** * Returns a hash function implementing the SHA-1 algorithm (160 hash bits) by delegating to the * SHA-1 {@link MessageDigest}. */ public static HashFunction sha1() { return SHA_1; } private static final HashFunction SHA_1 = new MessageDigestHashFunction("SHA-1", "Hashing.sha1()"); /** * Returns a hash function implementing the SHA-256 algorithm (256 hash bits) by delegating to * the SHA-256 {@link MessageDigest}. */ public static HashFunction sha256() { return SHA_256; } private static final HashFunction SHA_256 = new MessageDigestHashFunction("SHA-256", "Hashing.sha256()"); /** * Returns a hash function implementing the SHA-512 algorithm (512 hash bits) by delegating to the * SHA-512 {@link MessageDigest}. */ public static HashFunction sha512() { return SHA_512; } private static final HashFunction SHA_512 = new MessageDigestHashFunction("SHA-512", "Hashing.sha512()"); /** * Returns a hash function implementing the CRC-32 checksum algorithm (32 hash bits) by delegating * to the {@link CRC32} {@link Checksum}. * *

To get the {@code long} value equivalent to {@link Checksum#getValue()} for a * {@code HashCode} produced by this function, use {@link HashCode#padToLong()}. * * @since 14.0 */ public static HashFunction crc32() { return CRC_32; } private static final HashFunction CRC_32 = checksumHashFunction(ChecksumType.CRC_32, "Hashing.crc32()"); /** * Returns a hash function implementing the Adler-32 checksum algorithm (32 hash bits) by * delegating to the {@link Adler32} {@link Checksum}. * *

To get the {@code long} value equivalent to {@link Checksum#getValue()} for a * {@code HashCode} produced by this function, use {@link HashCode#padToLong()}. * * @since 14.0 */ public static HashFunction adler32() { return ADLER_32; } private static final HashFunction ADLER_32 = checksumHashFunction(ChecksumType.ADLER_32, "Hashing.adler32()"); private static HashFunction checksumHashFunction(ChecksumType type, String toString) { return new ChecksumHashFunction(type, type.bits, toString); } enum ChecksumType implements Supplier { CRC_32(32) { @Override public Checksum get() { return new CRC32(); } }, ADLER_32(32) { @Override public Checksum get() { return new Adler32(); } }; private final int bits; ChecksumType(int bits) { this.bits = bits; } @Override public abstract Checksum get(); } // Lazy initialization holder class idiom. /** * If {@code hashCode} has enough bits, returns {@code hashCode.asLong()}, otherwise * returns a {@code long} value with {@code hashCode.asInt()} as the least-significant * four bytes and {@code 0x00} as each of the most-significant four bytes. * * @deprecated Use {@code HashCode.padToLong()} instead. This method is scheduled to be * removed in Guava 15.0. */ @Deprecated public static long padToLong(HashCode hashCode) { return hashCode.padToLong(); } /** * Assigns to {@code hashCode} a "bucket" in the range {@code [0, buckets)}, in a uniform * manner that minimizes the need for remapping as {@code buckets} grows. That is, * {@code consistentHash(h, n)} equals: * *

    *
  • {@code n - 1}, with approximate probability {@code 1/n} *
  • {@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) *
* *

See the wikipedia * article on consistent hashing for more information. *

* If you might want to have weights for the buckets in the future, take a look at * {@code weightedConsistentHash}. */ public static int consistentHash(HashCode hashCode, int buckets) { return consistentHash(hashCode.padToLong(), buckets); } /** * Assigns to {@code input} a "bucket" in the range {@code [0, buckets)}, in a uniform * manner that minimizes the need for remapping as {@code buckets} grows. That is, * {@code consistentHash(h, n)} equals: * *

    *
  • {@code n - 1}, with approximate probability {@code 1/n} *
  • {@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) *
* *

See the wikipedia * article on consistent hashing for more information. *

* If you might want to have weights for the buckets in the future, take a look at * {@code weightedConsistentHash}. */ public static int consistentHash(long input, int buckets) { checkArgument(buckets > 0, "buckets must be positive: %s", buckets); LinearCongruentialGenerator generator = new LinearCongruentialGenerator(input); int candidate = 0; int next; // Jump from bucket to bucket until we go out of range while (true) { next = (int) ((candidate + 1) / generator.nextDouble()); if (next >= 0 && next < buckets) { candidate = next; } else { return candidate; } } } /** * Returns a hash code, having the same bit length as each of the input hash codes, * that combines the information of these hash codes in an ordered fashion. That * is, whenever two equal hash codes are produced by two calls to this method, it * is as likely as possible that each was computed from the same * input hash codes in the same order. * * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes * do not all have the same bit length */ public static HashCode combineOrdered(Iterable hashCodes) { Iterator iterator = hashCodes.iterator(); checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); int bits = iterator.next().bits(); byte[] resultBytes = new byte[bits / 8]; for (HashCode hashCode : hashCodes) { byte[] nextBytes = hashCode.asBytes(); checkArgument(nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); for (int i = 0; i < nextBytes.length; i++) { resultBytes[i] = (byte) (resultBytes[i] * 37 ^ nextBytes[i]); } } return HashCodes.fromBytesNoCopy(resultBytes); } /** * Returns a hash code, having the same bit length as each of the input hash codes, * that combines the information of these hash codes in an unordered fashion. That * is, whenever two equal hash codes are produced by two calls to this method, it * is as likely as possible that each was computed from the same * input hash codes in some order. * * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes * do not all have the same bit length */ public static HashCode combineUnordered(Iterable hashCodes) { Iterator iterator = hashCodes.iterator(); checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); byte[] resultBytes = new byte[iterator.next().bits() / 8]; for (HashCode hashCode : hashCodes) { byte[] nextBytes = hashCode.asBytes(); checkArgument(nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); for (int i = 0; i < nextBytes.length; i++) { resultBytes[i] += nextBytes[i]; } } return HashCodes.fromBytesNoCopy(resultBytes); } /** * Checks that the passed argument is positive, and ceils it to a multiple of 32. */ static int checkPositiveAndMakeMultipleOf32(int bits) { checkArgument(bits > 0, "Number of bits must be positive"); return (bits + 31) & ~31; } // TODO(kevinb): Maybe expose this class via a static Hashing method? @VisibleForTesting static final class ConcatenatedHashFunction extends AbstractCompositeHashFunction { private final int bits; ConcatenatedHashFunction(HashFunction... functions) { super(functions); int bitSum = 0; for (HashFunction function : functions) { bitSum += function.bits(); } this.bits = bitSum; } @Override HashCode makeHash(Hasher[] hashers) { // TODO(user): Get rid of the ByteBuffer here? byte[] bytes = new byte[bits / 8]; ByteBuffer buffer = ByteBuffer.wrap(bytes); for (Hasher hasher : hashers) { buffer.put(hasher.hash().asBytes()); } return HashCodes.fromBytesNoCopy(bytes); } @Override public int bits() { return bits; } } /** * Linear CongruentialGenerator to use for consistent hashing. * See http://en.wikipedia.org/wiki/Linear_congruential_generator */ private static final class LinearCongruentialGenerator { private long state; public LinearCongruentialGenerator(long seed) { this.state = seed; } public double nextDouble() { state = 2862933555777941757L * state + 1; return ((double) ((int) (state >>> 33) + 1)) / (0x1.0p31); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy