Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.eclipse.jdt.internal.compiler.ast.CastExpression Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2000, 2009 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
* Nick Teryaev - fix for bug (https://bugs.eclipse.org/bugs/show_bug.cgi?id=40752)
*******************************************************************************/
package org.eclipse.jdt.internal.compiler.ast;
import org.eclipse.jdt.internal.compiler.ASTVisitor;
import org.eclipse.jdt.internal.compiler.codegen.CodeStream;
import org.eclipse.jdt.internal.compiler.flow.FlowContext;
import org.eclipse.jdt.internal.compiler.flow.FlowInfo;
import org.eclipse.jdt.internal.compiler.impl.CompilerOptions;
import org.eclipse.jdt.internal.compiler.impl.Constant;
import org.eclipse.jdt.internal.compiler.lookup.ArrayBinding;
import org.eclipse.jdt.internal.compiler.lookup.Binding;
import org.eclipse.jdt.internal.compiler.lookup.BlockScope;
import org.eclipse.jdt.internal.compiler.lookup.InvocationSite;
import org.eclipse.jdt.internal.compiler.lookup.LocalVariableBinding;
import org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment;
import org.eclipse.jdt.internal.compiler.lookup.MethodBinding;
import org.eclipse.jdt.internal.compiler.lookup.ParameterizedGenericMethodBinding;
import org.eclipse.jdt.internal.compiler.lookup.ParameterizedTypeBinding;
import org.eclipse.jdt.internal.compiler.lookup.ReferenceBinding;
import org.eclipse.jdt.internal.compiler.lookup.Scope;
import org.eclipse.jdt.internal.compiler.lookup.TagBits;
import org.eclipse.jdt.internal.compiler.lookup.TypeBinding;
import org.eclipse.jdt.internal.compiler.lookup.TypeIds;
import org.eclipse.jdt.internal.compiler.problem.ProblemSeverities;
public class CastExpression extends Expression {
public Expression expression;
public Expression type;
public TypeBinding expectedType; // when assignment conversion to a given expected type: String s = (String) t;
//expression.implicitConversion holds the cast for baseType casting
public CastExpression(Expression expression, Expression type) {
this.expression = expression;
this.type = type;
type.bits |= ASTNode.IgnoreRawTypeCheck; // no need to worry about raw type usage
}
public FlowInfo analyseCode(BlockScope currentScope, FlowContext flowContext, FlowInfo flowInfo) {
return this.expression
.analyseCode(currentScope, flowContext, flowInfo)
.unconditionalInits();
}
/**
* Complain if assigned expression is cast, but not actually used as such, e.g. Object o = (List) object;
*/
public static void checkNeedForAssignedCast(BlockScope scope, TypeBinding expectedType, CastExpression rhs) {
if (scope.compilerOptions().getSeverity(CompilerOptions.UnnecessaryTypeCheck) == ProblemSeverities.Ignore) return;
TypeBinding castedExpressionType = rhs.expression.resolvedType;
// int i = (byte) n; // cast still had side effect
// double d = (float) n; // cast to float is unnecessary
if (castedExpressionType == null || rhs.resolvedType.isBaseType()) return;
//if (castedExpressionType.id == T_null) return; // tolerate null expression cast
if (castedExpressionType.isCompatibleWith(expectedType)) {
scope.problemReporter().unnecessaryCast(rhs);
}
}
/**
* Complain if cast expression is cast, but not actually needed, int i = (int)(Integer) 12;
* Note that this (int) cast is however needed: Integer i = 0; char c = (char)((int) i);
*/
public static void checkNeedForCastCast(BlockScope scope, CastExpression enclosingCast) {
if (scope.compilerOptions().getSeverity(CompilerOptions.UnnecessaryTypeCheck) == ProblemSeverities.Ignore) return;
CastExpression nestedCast = (CastExpression) enclosingCast.expression;
if ((nestedCast.bits & ASTNode.UnnecessaryCast) == 0) return;
// check if could cast directly to enclosing cast type, without intermediate type cast
CastExpression alternateCast = new CastExpression(null, enclosingCast.type);
alternateCast.resolvedType = enclosingCast.resolvedType;
if (!alternateCast.checkCastTypesCompatibility(scope, enclosingCast.resolvedType, nestedCast.expression.resolvedType, null /* no expr to avoid side-effects*/)) return;
scope.problemReporter().unnecessaryCast(nestedCast);
}
/**
* Casting an enclosing instance will considered as useful if removing it would actually bind to a different type
*/
public static void checkNeedForEnclosingInstanceCast(BlockScope scope, Expression enclosingInstance, TypeBinding enclosingInstanceType, TypeBinding memberType) {
if (scope.compilerOptions().getSeverity(CompilerOptions.UnnecessaryTypeCheck) == ProblemSeverities.Ignore) return;
TypeBinding castedExpressionType = ((CastExpression)enclosingInstance).expression.resolvedType;
if (castedExpressionType == null) return; // cannot do better
// obvious identity cast
if (castedExpressionType == enclosingInstanceType) {
scope.problemReporter().unnecessaryCast((CastExpression)enclosingInstance);
} else if (castedExpressionType == TypeBinding.NULL){
return; // tolerate null enclosing instance cast
} else {
TypeBinding alternateEnclosingInstanceType = castedExpressionType;
if (castedExpressionType.isBaseType() || castedExpressionType.isArrayType()) return; // error case
if (memberType == scope.getMemberType(memberType.sourceName(), (ReferenceBinding) alternateEnclosingInstanceType)) {
scope.problemReporter().unnecessaryCast((CastExpression)enclosingInstance);
}
}
}
/**
* Only complain for identity cast, since other type of casts may be useful: e.g. ~((~(long) 0) << 32) is different from: ~((~0) << 32)
*/
public static void checkNeedForArgumentCast(BlockScope scope, int operator, int operatorSignature, Expression expression, int expressionTypeId) {
if (scope.compilerOptions().getSeverity(CompilerOptions.UnnecessaryTypeCheck) == ProblemSeverities.Ignore) return;
// check need for left operand cast
int alternateLeftTypeId = expressionTypeId;
if ((expression.bits & ASTNode.UnnecessaryCast) == 0 && expression.resolvedType.isBaseType()) {
// narrowing conversion on base type may change value, thus necessary
return;
} else {
TypeBinding alternateLeftType = ((CastExpression)expression).expression.resolvedType;
if (alternateLeftType == null) return; // cannot do better
if ((alternateLeftTypeId = alternateLeftType.id) == expressionTypeId) { // obvious identity cast
scope.problemReporter().unnecessaryCast((CastExpression)expression);
return;
} else if (alternateLeftTypeId == TypeIds.T_null) {
alternateLeftTypeId = expressionTypeId; // tolerate null argument cast
return;
}
}
/* tolerate widening cast in unary expressions, as may be used when combined in binary expressions (41680)
int alternateOperatorSignature = OperatorExpression.OperatorSignatures[operator][(alternateLeftTypeId << 4) + alternateLeftTypeId];
// (cast) left Op (cast) right --> result
// 1111 0000 1111 0000 1111
// <<16 <<12 <<8 <<4 <<0
final int CompareMASK = (0xF<<16) + (0xF<<8) + 0xF; // mask hiding compile-time types
if ((operatorSignature & CompareMASK) == (alternateOperatorSignature & CompareMASK)) { // same promotions and result
scope.problemReporter().unnecessaryCastForArgument((CastExpression)expression, TypeBinding.wellKnownType(scope, expression.implicitConversion >> 4));
}
*/
}
/**
* Cast expressions will considered as useful if removing them all would actually bind to a different method
* (no fine grain analysis on per casted argument basis, simply separate widening cast from narrowing ones)
*/
public static void checkNeedForArgumentCasts(BlockScope scope, Expression receiver, TypeBinding receiverType, MethodBinding binding, Expression[] arguments, TypeBinding[] argumentTypes, final InvocationSite invocationSite) {
if (scope.compilerOptions().getSeverity(CompilerOptions.UnnecessaryTypeCheck) == ProblemSeverities.Ignore) return;
int length = argumentTypes.length;
// iterate over arguments, and retrieve original argument types (before cast)
TypeBinding[] rawArgumentTypes = argumentTypes;
for (int i = 0; i < length; i++) {
Expression argument = arguments[i];
if (argument instanceof CastExpression) {
// narrowing conversion on base type may change value, thus necessary
if ((argument.bits & ASTNode.UnnecessaryCast) == 0 && argument.resolvedType.isBaseType()) {
continue;
}
TypeBinding castedExpressionType = ((CastExpression)argument).expression.resolvedType;
if (castedExpressionType == null) return; // cannot do better
// obvious identity cast
if (castedExpressionType == argumentTypes[i]) {
scope.problemReporter().unnecessaryCast((CastExpression)argument);
} else if (castedExpressionType == TypeBinding.NULL){
continue; // tolerate null argument cast
} else if ((argument.implicitConversion & TypeIds.BOXING) != 0) {
continue; // boxing has a side effect: (int) char is not boxed as simple char
} else {
if (rawArgumentTypes == argumentTypes) {
System.arraycopy(rawArgumentTypes, 0, rawArgumentTypes = new TypeBinding[length], 0, length);
}
// retain original argument type
rawArgumentTypes[i] = castedExpressionType;
}
}
}
// perform alternate lookup with original types
if (rawArgumentTypes != argumentTypes) {
checkAlternateBinding(scope, receiver, receiverType, binding, arguments, argumentTypes, rawArgumentTypes, invocationSite);
}
}
/**
* Check binary operator casted arguments
*/
public static void checkNeedForArgumentCasts(BlockScope scope, int operator, int operatorSignature, Expression left, int leftTypeId, boolean leftIsCast, Expression right, int rightTypeId, boolean rightIsCast) {
if (scope.compilerOptions().getSeverity(CompilerOptions.UnnecessaryTypeCheck) == ProblemSeverities.Ignore) return;
// check need for left operand cast
int alternateLeftTypeId = leftTypeId;
if (leftIsCast) {
if ((left.bits & ASTNode.UnnecessaryCast) == 0 && left.resolvedType.isBaseType()) {
// narrowing conversion on base type may change value, thus necessary
leftIsCast = false;
} else {
TypeBinding alternateLeftType = ((CastExpression)left).expression.resolvedType;
if (alternateLeftType == null) return; // cannot do better
if ((alternateLeftTypeId = alternateLeftType.id) == leftTypeId) { // obvious identity cast
scope.problemReporter().unnecessaryCast((CastExpression)left);
leftIsCast = false;
} else if (alternateLeftTypeId == TypeIds.T_null) {
alternateLeftTypeId = leftTypeId; // tolerate null argument cast
leftIsCast = false;
}
}
}
// check need for right operand cast
int alternateRightTypeId = rightTypeId;
if (rightIsCast) {
if ((right.bits & ASTNode.UnnecessaryCast) == 0 && right.resolvedType.isBaseType()) {
// narrowing conversion on base type may change value, thus necessary
rightIsCast = false;
} else {
TypeBinding alternateRightType = ((CastExpression)right).expression.resolvedType;
if (alternateRightType == null) return; // cannot do better
if ((alternateRightTypeId = alternateRightType.id) == rightTypeId) { // obvious identity cast
scope.problemReporter().unnecessaryCast((CastExpression)right);
rightIsCast = false;
} else if (alternateRightTypeId == TypeIds.T_null) {
alternateRightTypeId = rightTypeId; // tolerate null argument cast
rightIsCast = false;
}
}
}
if (leftIsCast || rightIsCast) {
if (alternateLeftTypeId > 15 || alternateRightTypeId > 15) { // must convert String + Object || Object + String
if (alternateLeftTypeId == TypeIds.T_JavaLangString) {
alternateRightTypeId = TypeIds.T_JavaLangObject;
} else if (alternateRightTypeId == TypeIds.T_JavaLangString) {
alternateLeftTypeId = TypeIds.T_JavaLangObject;
} else {
return; // invalid operator
}
}
int alternateOperatorSignature = OperatorExpression.OperatorSignatures[operator][(alternateLeftTypeId << 4) + alternateRightTypeId];
// (cast) left Op (cast) right --> result
// 1111 0000 1111 0000 1111
// <<16 <<12 <<8 <<4 <<0
final int CompareMASK = (0xF<<16) + (0xF<<8) + 0xF; // mask hiding compile-time types
if ((operatorSignature & CompareMASK) == (alternateOperatorSignature & CompareMASK)) { // same promotions and result
if (leftIsCast) scope.problemReporter().unnecessaryCast((CastExpression)left);
if (rightIsCast) scope.problemReporter().unnecessaryCast((CastExpression)right);
}
}
}
private static void checkAlternateBinding(BlockScope scope, Expression receiver, TypeBinding receiverType, MethodBinding binding, Expression[] arguments, TypeBinding[] originalArgumentTypes, TypeBinding[] alternateArgumentTypes, final InvocationSite invocationSite) {
InvocationSite fakeInvocationSite = new InvocationSite(){
public TypeBinding[] genericTypeArguments() { return null; }
public boolean isSuperAccess(){ return invocationSite.isSuperAccess(); }
public boolean isTypeAccess() { return invocationSite.isTypeAccess(); }
public void setActualReceiverType(ReferenceBinding actualReceiverType) { /* ignore */}
public void setDepth(int depth) { /* ignore */}
public void setFieldIndex(int depth){ /* ignore */}
public int sourceStart() { return 0; }
public int sourceEnd() { return 0; }
};
MethodBinding bindingIfNoCast;
if (binding.isConstructor()) {
bindingIfNoCast = scope.getConstructor((ReferenceBinding)receiverType, alternateArgumentTypes, fakeInvocationSite);
} else {
bindingIfNoCast = receiver.isImplicitThis()
? scope.getImplicitMethod(binding.selector, alternateArgumentTypes, fakeInvocationSite)
: scope.getMethod(receiverType, binding.selector, alternateArgumentTypes, fakeInvocationSite);
}
if (bindingIfNoCast == binding) {
int argumentLength = originalArgumentTypes.length;
if (binding.isVarargs()) {
int paramLength = binding.parameters.length;
if (paramLength == argumentLength) {
int varargsIndex = paramLength - 1;
ArrayBinding varargsType = (ArrayBinding) binding.parameters[varargsIndex];
TypeBinding lastArgType = alternateArgumentTypes[varargsIndex];
// originalType may be compatible already, but cast mandated
// to clarify between varargs/non-varargs call
if (varargsType.dimensions != lastArgType.dimensions()) {
return;
}
if (lastArgType.isCompatibleWith(varargsType.elementsType())
&& lastArgType.isCompatibleWith(varargsType)) {
return;
}
}
}
for (int i = 0; i < argumentLength; i++) {
if (originalArgumentTypes[i] != alternateArgumentTypes[i]
/*&& !originalArgumentTypes[i].needsUncheckedConversion(alternateArgumentTypes[i])*/) {
scope.problemReporter().unnecessaryCast((CastExpression)arguments[i]);
}
}
}
}
public boolean checkUnsafeCast(Scope scope, TypeBinding castType, TypeBinding expressionType, TypeBinding match, boolean isNarrowing) {
if (match == castType) {
if (!isNarrowing && match == this.resolvedType.leafComponentType()) { // do not tag as unnecessary when recursing through upper bounds
tagAsUnnecessaryCast(scope, castType);
}
return true;
}
if (match != null) {
if (isNarrowing
? match.isProvablyDistinct(expressionType)
: castType.isProvablyDistinct(match)) {
return false;
}
}
switch (castType.kind()) {
case Binding.PARAMETERIZED_TYPE :
if (castType.isBoundParameterizedType()) {
if (match == null) { // unrelated types
this.bits |= ASTNode.UnsafeCast;
return true;
}
switch (match.kind()) {
case Binding.PARAMETERIZED_TYPE :
if (isNarrowing) {
// [JLS 5.5] T <: S
if (expressionType.isRawType() || !expressionType.isEquivalentTo(match)) {
this.bits |= ASTNode.UnsafeCast;
return true;
}
// [JLS 5.5] S has no subtype X != T, such that |X| == |T|
// if I2 extends I1, then cast from I1 to I2 is unchecked
ParameterizedTypeBinding paramCastType = (ParameterizedTypeBinding) castType;
ParameterizedTypeBinding paramMatch = (ParameterizedTypeBinding) match;
// easy case if less parameters on match
TypeBinding[] castArguments = paramCastType.arguments;
int length = castArguments.length;
if (paramMatch.arguments == null || length > paramMatch.arguments.length) {
this.bits |= ASTNode.UnsafeCast;
} else if ((paramCastType.tagBits & (TagBits.HasDirectWildcard|TagBits.HasTypeVariable)) != 0) {
// verify alternate cast type, substituting different type arguments
nextAlternateArgument: for (int i = 0; i < length; i++) {
switch (castArguments[i].kind()) {
case Binding.WILDCARD_TYPE :
case Binding.TYPE_PARAMETER :
break; // check substituting with other
default:
continue nextAlternateArgument; // no alternative possible
}
TypeBinding[] alternateArguments;
// need to clone for each iteration to avoid env paramtype cache interference
System.arraycopy(paramCastType.arguments, 0, alternateArguments = new TypeBinding[length], 0, length);
alternateArguments[i] = scope.getJavaLangObject();
LookupEnvironment environment = scope.environment();
ParameterizedTypeBinding alternateCastType = environment.createParameterizedType((ReferenceBinding)castType.erasure(), alternateArguments, castType.enclosingType());
if (alternateCastType.findSuperTypeOriginatingFrom(expressionType) == match) {
this.bits |= ASTNode.UnsafeCast;
break;
}
}
}
return true;
} else {
// [JLS 5.5] T >: S
if (!match.isEquivalentTo(castType)) {
this.bits |= ASTNode.UnsafeCast;
return true;
}
}
break;
case Binding.RAW_TYPE :
this.bits |= ASTNode.UnsafeCast; // upcast since castType is known to be bound paramType
return true;
default :
if (isNarrowing){
// match is not parameterized or raw, then any other subtype of match will erase to |T|
this.bits |= ASTNode.UnsafeCast;
return true;
}
break;
}
}
break;
case Binding.ARRAY_TYPE :
TypeBinding leafType = castType.leafComponentType();
if (isNarrowing && (leafType.isBoundParameterizedType() || leafType.isTypeVariable())) {
this.bits |= ASTNode.UnsafeCast;
return true;
}
break;
case Binding.TYPE_PARAMETER :
this.bits |= ASTNode.UnsafeCast;
return true;
// (disabled) https://bugs.eclipse.org/bugs/show_bug.cgi?id=240807
// case Binding.TYPE :
// if (isNarrowing && match == null && expressionType.isParameterizedType()) {
// this.bits |= ASTNode.UnsafeCast;
// return true;
// }
// break;
}
if (!isNarrowing && match == this.resolvedType.leafComponentType()) { // do not tag as unnecessary when recursing through upper bounds
tagAsUnnecessaryCast(scope, castType);
}
return true;
}
/**
* Cast expression code generation
*
* @param currentScope org.eclipse.jdt.internal.compiler.lookup.BlockScope
* @param codeStream org.eclipse.jdt.internal.compiler.codegen.CodeStream
* @param valueRequired boolean
*/
public void generateCode(BlockScope currentScope, CodeStream codeStream, boolean valueRequired) {
int pc = codeStream.position;
boolean needRuntimeCheckcast = (this.bits & ASTNode.GenerateCheckcast) != 0;
if (this.constant != Constant.NotAConstant) {
if (valueRequired || needRuntimeCheckcast) { // Added for: 1F1W9IG: IVJCOM:WINNT - Compiler omits casting check
codeStream.generateConstant(this.constant, this.implicitConversion);
if (needRuntimeCheckcast) {
codeStream.checkcast(this.resolvedType);
}
if (!valueRequired) {
// the resolveType cannot be double or long
codeStream.pop();
}
}
codeStream.recordPositionsFrom(pc, this.sourceStart);
return;
}
this.expression.generateCode(currentScope, codeStream, valueRequired || needRuntimeCheckcast);
if (needRuntimeCheckcast && this.expression.postConversionType(currentScope) != this.resolvedType.erasure()) { // no need to issue a checkcast if already done as genericCast
codeStream.checkcast(this.resolvedType);
}
if (valueRequired) {
codeStream.generateImplicitConversion(this.implicitConversion);
} else if (needRuntimeCheckcast) {
codeStream.pop();
}
codeStream.recordPositionsFrom(pc, this.sourceStart);
}
public Expression innermostCastedExpression(){
Expression current = this.expression;
while (current instanceof CastExpression) {
current = ((CastExpression) current).expression;
}
return current;
}
/**
* @see org.eclipse.jdt.internal.compiler.ast.Expression#localVariableBinding()
*/
public LocalVariableBinding localVariableBinding() {
return this.expression.localVariableBinding();
}
public int nullStatus(FlowInfo flowInfo) {
return this.expression.nullStatus(flowInfo);
}
/**
* @see org.eclipse.jdt.internal.compiler.ast.Expression#optimizedBooleanConstant()
*/
public Constant optimizedBooleanConstant() {
switch(this.resolvedType.id) {
case T_boolean :
case T_JavaLangBoolean :
return this.expression.optimizedBooleanConstant();
}
return Constant.NotAConstant;
}
public StringBuffer printExpression(int indent, StringBuffer output) {
output.append('(');
this.type.print(0, output).append(") "); //$NON-NLS-1$
return this.expression.printExpression(0, output);
}
public TypeBinding resolveType(BlockScope scope) {
// compute a new constant if the cast is effective
// due to the fact an expression may start with ( and that a cast can also start with (
// the field is an expression....it can be a TypeReference OR a NameReference Or
// any kind of Expression <-- this last one is invalid.......
this.constant = Constant.NotAConstant;
this.implicitConversion = TypeIds.T_undefined;
if ((this.type instanceof TypeReference) || (this.type instanceof NameReference)
&& ((this.type.bits & ASTNode.ParenthesizedMASK) >> ASTNode.ParenthesizedSHIFT) == 0) { // no extra parenthesis around type: ((A))exp
boolean exprContainCast = false;
TypeBinding castType = this.resolvedType = this.type.resolveType(scope);
//expression.setExpectedType(this.resolvedType); // needed in case of generic method invocation
if (this.expression instanceof CastExpression) {
this.expression.bits |= ASTNode.DisableUnnecessaryCastCheck;
exprContainCast = true;
}
TypeBinding expressionType = this.expression.resolveType(scope);
if (castType != null) {
if (expressionType != null) {
boolean isLegal = checkCastTypesCompatibility(scope, castType, expressionType, this.expression);
if (isLegal) {
this.expression.computeConversion(scope, castType, expressionType);
if ((this.bits & ASTNode.UnsafeCast) != 0) { // unsafe cast
scope.problemReporter().unsafeCast(this, scope);
} else {
if (castType.isRawType() && scope.compilerOptions().getSeverity(CompilerOptions.RawTypeReference) != ProblemSeverities.Ignore){
scope.problemReporter().rawTypeReference(this.type, castType);
}
if ((this.bits & (ASTNode.UnnecessaryCast|ASTNode.DisableUnnecessaryCastCheck)) == ASTNode.UnnecessaryCast) { // unnecessary cast
if (!isIndirectlyUsed()) // used for generic type inference or boxing ?
scope.problemReporter().unnecessaryCast(this);
}
}
} else { // illegal cast
if ((castType.tagBits & TagBits.HasMissingType) == 0) { // no complaint if secondary error
scope.problemReporter().typeCastError(this, castType, expressionType);
}
this.bits |= ASTNode.DisableUnnecessaryCastCheck; // disable further secondary diagnosis
}
}
this.resolvedType = castType.capture(scope, this.sourceEnd);
if (exprContainCast) {
checkNeedForCastCast(scope, this);
}
}
return this.resolvedType;
} else { // expression as a cast
TypeBinding expressionType = this.expression.resolveType(scope);
if (expressionType == null) return null;
scope.problemReporter().invalidTypeReference(this.type);
return null;
}
}
/**
* @see org.eclipse.jdt.internal.compiler.ast.Expression#setExpectedType(org.eclipse.jdt.internal.compiler.lookup.TypeBinding)
*/
public void setExpectedType(TypeBinding expectedType) {
this.expectedType = expectedType;
}
/**
* Determines whether apparent unnecessary cast wasn't actually used to
* perform return type inference of generic method invocation or boxing.
*/
private boolean isIndirectlyUsed() {
if (this.expression instanceof MessageSend) {
MethodBinding method = ((MessageSend)this.expression).binding;
if (method instanceof ParameterizedGenericMethodBinding
&& ((ParameterizedGenericMethodBinding)method).inferredReturnType) {
if (this.expectedType == null)
return true;
if (this.resolvedType != this.expectedType)
return true;
}
}
if (this.expectedType != null && this.resolvedType.isBaseType() && !this.resolvedType.isCompatibleWith(this.expectedType)) {
// boxing: Short s = (short) _byte
return true;
}
return false;
}
/**
* @see org.eclipse.jdt.internal.compiler.ast.Expression#tagAsNeedCheckCast()
*/
public void tagAsNeedCheckCast() {
this.bits |= ASTNode.GenerateCheckcast;
}
/**
* @see org.eclipse.jdt.internal.compiler.ast.Expression#tagAsUnnecessaryCast(Scope, TypeBinding)
*/
public void tagAsUnnecessaryCast(Scope scope, TypeBinding castType) {
this.bits |= ASTNode.UnnecessaryCast;
}
public void traverse(ASTVisitor visitor, BlockScope blockScope) {
if (visitor.visit(this, blockScope)) {
this.type.traverse(visitor, blockScope);
this.expression.traverse(visitor, blockScope);
}
visitor.endVisit(this, blockScope);
}
}