org.apache.cassandra.utils.btree.Path Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cassandra-all Show documentation
Show all versions of cassandra-all Show documentation
Palantir open source project
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.cassandra.utils.btree;
import java.util.Comparator;
import static org.apache.cassandra.utils.btree.BTree.NEGATIVE_INFINITY;
import static org.apache.cassandra.utils.btree.BTree.POSITIVE_INFINITY;
import static org.apache.cassandra.utils.btree.BTree.getBranchKeyEnd;
import static org.apache.cassandra.utils.btree.BTree.getKeyEnd;
import static org.apache.cassandra.utils.btree.BTree.getLeafKeyEnd;
import static org.apache.cassandra.utils.btree.BTree.isLeaf;
/**
* An internal class for searching and iterating through a tree. As it traverses the tree,
* it adds the nodes visited to a stack. This allows us to backtrack from a child node
* to its parent.
*
* As we navigate the tree, we destructively modify this stack.
*
* Path is only intended to be used via Cursor.
*/
public class Path
{
// operations corresponding to the ones in NavigableSet
static enum Op
{
CEIL, // the least element greater than or equal to the given element
FLOOR, // the greatest element less than or equal to the given element
HIGHER, // the least element strictly greater than the given element
LOWER // the greatest element strictly less than the given element
}
// the path to the searched-for key
Object[][] path;
// the index within the node of our path at a given depth
byte[] indexes;
// current depth. nothing in path[i] for i > depth is valid.
byte depth;
Path() { }
Path(int depth, Object[] btree)
{
this.path = new Object[depth][];
this.indexes = new byte[depth];
this.path[0] = btree;
}
void init(Object[] btree)
{
int depth = BTree.depth(btree);
if (path == null || path.length < depth)
{
path = new Object[depth][];
indexes = new byte[depth];
}
path[0] = btree;
}
void moveEnd(Object[] node, boolean forwards)
{
push(node, getKeyEnd(node));
if (!forwards)
predecessor();
}
void moveStart(Object[] node, boolean forwards)
{
push(node, -1);
if (forwards)
successor();
}
/**
* Find the provided key in the tree rooted at node, and store the root to it in the path
*
* @param comparator the comparator defining the order on the tree
* @param target the key to search for
* @param mode the type of search to perform
* @param forwards if the path should be setup for forward or backward iteration
* @param
*/
boolean find(Comparator comparator, Object target, Op mode, boolean forwards)
{
// TODO : should not require parameter 'forwards' - consider modifying index to represent both
// child and key position, as opposed to just key position (which necessitates a different value depending
// on which direction you're moving in. Prerequisite for making Path public and using to implement general
// search
Object[] node = path[depth];
int lb = indexes[depth];
assert lb == 0 || forwards;
pop();
if (target instanceof BTree.Special)
{
if (target == POSITIVE_INFINITY)
moveEnd(node, forwards);
else if (target == NEGATIVE_INFINITY)
moveStart(node, forwards);
else
throw new AssertionError();
return false;
}
while (true)
{
int keyEnd = getKeyEnd(node);
// search for the target in the current node
int i = BTree.find(comparator, target, node, lb, keyEnd);
lb = 0;
if (i >= 0)
{
// exact match. transform exclusive bounds into the correct index by moving back or forwards one
push(node, i);
switch (mode)
{
case HIGHER:
successor();
break;
case LOWER:
predecessor();
}
return true;
}
i = -i - 1;
// traverse into the appropriate child
if (!isLeaf(node))
{
push(node, forwards ? i - 1 : i);
node = (Object[]) node[keyEnd + i];
continue;
}
// bottom of the tree and still not found. pick the right index to satisfy Op
switch (mode)
{
case FLOOR:
case LOWER:
i--;
}
if (i < 0)
{
push(node, 0);
predecessor();
}
else if (i >= keyEnd)
{
push(node, keyEnd - 1);
successor();
}
else
{
push(node, i);
}
return false;
}
}
boolean isRoot()
{
return depth == 0;
}
void pop()
{
depth--;
}
Object[] currentNode()
{
return path[depth];
}
byte currentIndex()
{
return indexes[depth];
}
void push(Object[] node, int index)
{
path[++depth] = node;
indexes[depth] = (byte) index;
}
void setIndex(int index)
{
indexes[depth] = (byte) index;
}
byte findSuccessorParentDepth()
{
byte depth = this.depth;
depth--;
while (depth >= 0)
{
int ub = indexes[depth] + 1;
Object[] node = path[depth];
if (ub < getBranchKeyEnd(node))
return depth;
depth--;
}
return -1;
}
// move to the next key in the tree
void successor()
{
Object[] node = currentNode();
int i = currentIndex();
if (!isLeaf(node))
{
// if we're on a key in a branch, we MUST have a descendant either side of us,
// so we always go down the left-most child until we hit a leaf
node = (Object[]) node[getBranchKeyEnd(node) + i + 1];
while (!isLeaf(node))
{
push(node, -1);
node = (Object[]) node[getBranchKeyEnd(node)];
}
push(node, 0);
return;
}
// if we haven't reached the end of this leaf, just increment our index and return
i += 1;
if (i < getLeafKeyEnd(node))
{
// moved to the next key in the same leaf
setIndex(i);
return;
}
// we've reached the end of this leaf,
// so go up until we reach something we've not finished visiting
while (!isRoot())
{
pop();
i = currentIndex() + 1;
node = currentNode();
if (i < getKeyEnd(node))
{
setIndex(i);
return;
}
}
// we've visited the last key in the root node, so we're done
setIndex(getKeyEnd(node));
}
// move to the previous key in the tree
void predecessor()
{
Object[] node = currentNode();
int i = currentIndex();
if (!isLeaf(node))
{
// if we're on a key in a branch, we MUST have a descendant either side of us
// so we always go down the right-most child until we hit a leaf
node = (Object[]) node[getBranchKeyEnd(node) + i];
while (!isLeaf(node))
{
i = getBranchKeyEnd(node);
push(node, i);
node = (Object[]) node[i * 2];
}
push(node, getLeafKeyEnd(node) - 1);
return;
}
// if we haven't reached the beginning of this leaf, just decrement our index and return
i -= 1;
if (i >= 0)
{
setIndex(i);
return;
}
// we've reached the beginning of this leaf,
// so go up until we reach something we've not finished visiting
while (!isRoot())
{
pop();
i = currentIndex() - 1;
if (i >= 0)
{
setIndex(i);
return;
}
}
// we've visited the last key in the root node, so we're done
setIndex(-1);
}
Object currentKey()
{
return currentNode()[currentIndex()];
}
int compareTo(Path that, boolean forwards)
{
int d = Math.min(this.depth, that.depth);
for (int i = 0; i <= d; i++)
{
int c = this.indexes[i] - that.indexes[i];
if (c != 0)
return c;
}
// identical indices up to depth, so if somebody is lower depth they are on a later item if iterating forwards
// and an earlier item if iterating backwards, as the node at max common depth must be a branch if they are
// different depths, and branches that are currently descended into lag the child index they are in when iterating forwards,
// i.e. if they are in child 0 they record an index of -1 forwards, or 0 when backwards
d = this.depth - that.depth;
return forwards ? d : -d;
}
}