All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.ortools.linearsolver.MPSolutionResponse Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: ortools/linear_solver/linear_solver.proto

package com.google.ortools.linearsolver;

/**
 * Protobuf type {@code operations_research.MPSolutionResponse}
 */
public final class MPSolutionResponse extends
    com.google.protobuf.GeneratedMessageV3 implements
    // @@protoc_insertion_point(message_implements:operations_research.MPSolutionResponse)
    MPSolutionResponseOrBuilder {
private static final long serialVersionUID = 0L;
  // Use MPSolutionResponse.newBuilder() to construct.
  private MPSolutionResponse(com.google.protobuf.GeneratedMessageV3.Builder builder) {
    super(builder);
  }
  private MPSolutionResponse() {
    status_ = 99;
    statusStr_ = "";
    variableValue_ = emptyDoubleList();
    dualValue_ = emptyDoubleList();
    reducedCost_ = emptyDoubleList();
  }

  @java.lang.Override
  @SuppressWarnings({"unused"})
  protected java.lang.Object newInstance(
      UnusedPrivateParameter unused) {
    return new MPSolutionResponse();
  }

  @java.lang.Override
  public final com.google.protobuf.UnknownFieldSet
  getUnknownFields() {
    return this.unknownFields;
  }
  private MPSolutionResponse(
      com.google.protobuf.CodedInputStream input,
      com.google.protobuf.ExtensionRegistryLite extensionRegistry)
      throws com.google.protobuf.InvalidProtocolBufferException {
    this();
    if (extensionRegistry == null) {
      throw new java.lang.NullPointerException();
    }
    int mutable_bitField0_ = 0;
    com.google.protobuf.UnknownFieldSet.Builder unknownFields =
        com.google.protobuf.UnknownFieldSet.newBuilder();
    try {
      boolean done = false;
      while (!done) {
        int tag = input.readTag();
        switch (tag) {
          case 0:
            done = true;
            break;
          case 8: {
            int rawValue = input.readEnum();
              @SuppressWarnings("deprecation")
            com.google.ortools.linearsolver.MPSolverResponseStatus value = com.google.ortools.linearsolver.MPSolverResponseStatus.valueOf(rawValue);
            if (value == null) {
              unknownFields.mergeVarintField(1, rawValue);
            } else {
              bitField0_ |= 0x00000001;
              status_ = rawValue;
            }
            break;
          }
          case 17: {
            bitField0_ |= 0x00000004;
            objectiveValue_ = input.readDouble();
            break;
          }
          case 25: {
            if (!((mutable_bitField0_ & 0x00000010) != 0)) {
              variableValue_ = newDoubleList();
              mutable_bitField0_ |= 0x00000010;
            }
            variableValue_.addDouble(input.readDouble());
            break;
          }
          case 26: {
            int length = input.readRawVarint32();
            int limit = input.pushLimit(length);
            if (!((mutable_bitField0_ & 0x00000010) != 0) && input.getBytesUntilLimit() > 0) {
              variableValue_ = newDoubleList();
              mutable_bitField0_ |= 0x00000010;
            }
            while (input.getBytesUntilLimit() > 0) {
              variableValue_.addDouble(input.readDouble());
            }
            input.popLimit(limit);
            break;
          }
          case 33: {
            if (!((mutable_bitField0_ & 0x00000020) != 0)) {
              dualValue_ = newDoubleList();
              mutable_bitField0_ |= 0x00000020;
            }
            dualValue_.addDouble(input.readDouble());
            break;
          }
          case 34: {
            int length = input.readRawVarint32();
            int limit = input.pushLimit(length);
            if (!((mutable_bitField0_ & 0x00000020) != 0) && input.getBytesUntilLimit() > 0) {
              dualValue_ = newDoubleList();
              mutable_bitField0_ |= 0x00000020;
            }
            while (input.getBytesUntilLimit() > 0) {
              dualValue_.addDouble(input.readDouble());
            }
            input.popLimit(limit);
            break;
          }
          case 41: {
            bitField0_ |= 0x00000008;
            bestObjectiveBound_ = input.readDouble();
            break;
          }
          case 49: {
            if (!((mutable_bitField0_ & 0x00000040) != 0)) {
              reducedCost_ = newDoubleList();
              mutable_bitField0_ |= 0x00000040;
            }
            reducedCost_.addDouble(input.readDouble());
            break;
          }
          case 50: {
            int length = input.readRawVarint32();
            int limit = input.pushLimit(length);
            if (!((mutable_bitField0_ & 0x00000040) != 0) && input.getBytesUntilLimit() > 0) {
              reducedCost_ = newDoubleList();
              mutable_bitField0_ |= 0x00000040;
            }
            while (input.getBytesUntilLimit() > 0) {
              reducedCost_.addDouble(input.readDouble());
            }
            input.popLimit(limit);
            break;
          }
          case 58: {
            com.google.protobuf.ByteString bs = input.readBytes();
            bitField0_ |= 0x00000002;
            statusStr_ = bs;
            break;
          }
          default: {
            if (!parseUnknownField(
                input, unknownFields, extensionRegistry, tag)) {
              done = true;
            }
            break;
          }
        }
      }
    } catch (com.google.protobuf.InvalidProtocolBufferException e) {
      throw e.setUnfinishedMessage(this);
    } catch (java.io.IOException e) {
      throw new com.google.protobuf.InvalidProtocolBufferException(
          e).setUnfinishedMessage(this);
    } finally {
      if (((mutable_bitField0_ & 0x00000010) != 0)) {
        variableValue_.makeImmutable(); // C
      }
      if (((mutable_bitField0_ & 0x00000020) != 0)) {
        dualValue_.makeImmutable(); // C
      }
      if (((mutable_bitField0_ & 0x00000040) != 0)) {
        reducedCost_.makeImmutable(); // C
      }
      this.unknownFields = unknownFields.build();
      makeExtensionsImmutable();
    }
  }
  public static final com.google.protobuf.Descriptors.Descriptor
      getDescriptor() {
    return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSolutionResponse_descriptor;
  }

  @java.lang.Override
  protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
      internalGetFieldAccessorTable() {
    return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSolutionResponse_fieldAccessorTable
        .ensureFieldAccessorsInitialized(
            com.google.ortools.linearsolver.MPSolutionResponse.class, com.google.ortools.linearsolver.MPSolutionResponse.Builder.class);
  }

  private int bitField0_;
  public static final int STATUS_FIELD_NUMBER = 1;
  private int status_;
  /**
   * 
   * Result of the optimization.
   * 
* * optional .operations_research.MPSolverResponseStatus status = 1 [default = MPSOLVER_UNKNOWN_STATUS]; * @return Whether the status field is set. */ @java.lang.Override public boolean hasStatus() { return ((bitField0_ & 0x00000001) != 0); } /** *
   * Result of the optimization.
   * 
* * optional .operations_research.MPSolverResponseStatus status = 1 [default = MPSOLVER_UNKNOWN_STATUS]; * @return The status. */ @java.lang.Override public com.google.ortools.linearsolver.MPSolverResponseStatus getStatus() { @SuppressWarnings("deprecation") com.google.ortools.linearsolver.MPSolverResponseStatus result = com.google.ortools.linearsolver.MPSolverResponseStatus.valueOf(status_); return result == null ? com.google.ortools.linearsolver.MPSolverResponseStatus.MPSOLVER_UNKNOWN_STATUS : result; } public static final int STATUS_STR_FIELD_NUMBER = 7; private volatile java.lang.Object statusStr_; /** *
   * Human-readable string giving more details about the status. For example,
   * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
   * why the model is invalid.
   * This isn't always filled: don't depend on its value or even its presence.
   * 
* * optional string status_str = 7; * @return Whether the statusStr field is set. */ @java.lang.Override public boolean hasStatusStr() { return ((bitField0_ & 0x00000002) != 0); } /** *
   * Human-readable string giving more details about the status. For example,
   * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
   * why the model is invalid.
   * This isn't always filled: don't depend on its value or even its presence.
   * 
* * optional string status_str = 7; * @return The statusStr. */ @java.lang.Override public java.lang.String getStatusStr() { java.lang.Object ref = statusStr_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { statusStr_ = s; } return s; } } /** *
   * Human-readable string giving more details about the status. For example,
   * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
   * why the model is invalid.
   * This isn't always filled: don't depend on its value or even its presence.
   * 
* * optional string status_str = 7; * @return The bytes for statusStr. */ @java.lang.Override public com.google.protobuf.ByteString getStatusStrBytes() { java.lang.Object ref = statusStr_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); statusStr_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int OBJECTIVE_VALUE_FIELD_NUMBER = 2; private double objectiveValue_; /** *
   * Objective value corresponding to the "variable_value" below, taking into
   * account the source "objective_offset" and "objective_coefficient".
   * This is set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * optional double objective_value = 2; * @return Whether the objectiveValue field is set. */ @java.lang.Override public boolean hasObjectiveValue() { return ((bitField0_ & 0x00000004) != 0); } /** *
   * Objective value corresponding to the "variable_value" below, taking into
   * account the source "objective_offset" and "objective_coefficient".
   * This is set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * optional double objective_value = 2; * @return The objectiveValue. */ @java.lang.Override public double getObjectiveValue() { return objectiveValue_; } public static final int BEST_OBJECTIVE_BOUND_FIELD_NUMBER = 5; private double bestObjectiveBound_; /** *
   * This field is only filled for MIP problems. For a minimization problem,
   * this is a lower bound on the optimal objective value. For a maximization
   * problem, it is an upper bound. It is only filled if the status is OPTIMAL
   * or FEASIBLE. In the former case, best_objective_bound should be equal to
   * objective_value (modulo numerical errors).
   * 
* * optional double best_objective_bound = 5; * @return Whether the bestObjectiveBound field is set. */ @java.lang.Override public boolean hasBestObjectiveBound() { return ((bitField0_ & 0x00000008) != 0); } /** *
   * This field is only filled for MIP problems. For a minimization problem,
   * this is a lower bound on the optimal objective value. For a maximization
   * problem, it is an upper bound. It is only filled if the status is OPTIMAL
   * or FEASIBLE. In the former case, best_objective_bound should be equal to
   * objective_value (modulo numerical errors).
   * 
* * optional double best_objective_bound = 5; * @return The bestObjectiveBound. */ @java.lang.Override public double getBestObjectiveBound() { return bestObjectiveBound_; } public static final int VARIABLE_VALUE_FIELD_NUMBER = 3; private com.google.protobuf.Internal.DoubleList variableValue_; /** *
   * Variable values in the same order as the MPModelProto::variable field.
   * This is a dense representation. These are set iff 'status' is OPTIMAL or
   * FEASIBLE.
   * 
* * repeated double variable_value = 3 [packed = true]; * @return A list containing the variableValue. */ @java.lang.Override public java.util.List getVariableValueList() { return variableValue_; } /** *
   * Variable values in the same order as the MPModelProto::variable field.
   * This is a dense representation. These are set iff 'status' is OPTIMAL or
   * FEASIBLE.
   * 
* * repeated double variable_value = 3 [packed = true]; * @return The count of variableValue. */ public int getVariableValueCount() { return variableValue_.size(); } /** *
   * Variable values in the same order as the MPModelProto::variable field.
   * This is a dense representation. These are set iff 'status' is OPTIMAL or
   * FEASIBLE.
   * 
* * repeated double variable_value = 3 [packed = true]; * @param index The index of the element to return. * @return The variableValue at the given index. */ public double getVariableValue(int index) { return variableValue_.getDouble(index); } private int variableValueMemoizedSerializedSize = -1; public static final int DUAL_VALUE_FIELD_NUMBER = 4; private com.google.protobuf.Internal.DoubleList dualValue_; /** *
   * [Advanced usage.]
   * Values of the dual variables values in the same order as the
   * MPModelProto::constraint field. This is a dense representation.
   * These are not set if the problem was solved with a MIP solver (even if
   * it is actually a linear program).
   * These are set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * repeated double dual_value = 4 [packed = true]; * @return A list containing the dualValue. */ @java.lang.Override public java.util.List getDualValueList() { return dualValue_; } /** *
   * [Advanced usage.]
   * Values of the dual variables values in the same order as the
   * MPModelProto::constraint field. This is a dense representation.
   * These are not set if the problem was solved with a MIP solver (even if
   * it is actually a linear program).
   * These are set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * repeated double dual_value = 4 [packed = true]; * @return The count of dualValue. */ public int getDualValueCount() { return dualValue_.size(); } /** *
   * [Advanced usage.]
   * Values of the dual variables values in the same order as the
   * MPModelProto::constraint field. This is a dense representation.
   * These are not set if the problem was solved with a MIP solver (even if
   * it is actually a linear program).
   * These are set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * repeated double dual_value = 4 [packed = true]; * @param index The index of the element to return. * @return The dualValue at the given index. */ public double getDualValue(int index) { return dualValue_.getDouble(index); } private int dualValueMemoizedSerializedSize = -1; public static final int REDUCED_COST_FIELD_NUMBER = 6; private com.google.protobuf.Internal.DoubleList reducedCost_; /** *
   * [Advanced usage.]
   * Values of the reduced cost of the variables in the same order as the
   * MPModelProto::variable. This is a dense representation.
   * These are not set if the problem was solved with a MIP solver (even if it
   * is actually a linear program).
   * These are set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * repeated double reduced_cost = 6 [packed = true]; * @return A list containing the reducedCost. */ @java.lang.Override public java.util.List getReducedCostList() { return reducedCost_; } /** *
   * [Advanced usage.]
   * Values of the reduced cost of the variables in the same order as the
   * MPModelProto::variable. This is a dense representation.
   * These are not set if the problem was solved with a MIP solver (even if it
   * is actually a linear program).
   * These are set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * repeated double reduced_cost = 6 [packed = true]; * @return The count of reducedCost. */ public int getReducedCostCount() { return reducedCost_.size(); } /** *
   * [Advanced usage.]
   * Values of the reduced cost of the variables in the same order as the
   * MPModelProto::variable. This is a dense representation.
   * These are not set if the problem was solved with a MIP solver (even if it
   * is actually a linear program).
   * These are set iff 'status' is OPTIMAL or FEASIBLE.
   * 
* * repeated double reduced_cost = 6 [packed = true]; * @param index The index of the element to return. * @return The reducedCost at the given index. */ public double getReducedCost(int index) { return reducedCost_.getDouble(index); } private int reducedCostMemoizedSerializedSize = -1; private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); if (((bitField0_ & 0x00000001) != 0)) { output.writeEnum(1, status_); } if (((bitField0_ & 0x00000004) != 0)) { output.writeDouble(2, objectiveValue_); } if (getVariableValueList().size() > 0) { output.writeUInt32NoTag(26); output.writeUInt32NoTag(variableValueMemoizedSerializedSize); } for (int i = 0; i < variableValue_.size(); i++) { output.writeDoubleNoTag(variableValue_.getDouble(i)); } if (getDualValueList().size() > 0) { output.writeUInt32NoTag(34); output.writeUInt32NoTag(dualValueMemoizedSerializedSize); } for (int i = 0; i < dualValue_.size(); i++) { output.writeDoubleNoTag(dualValue_.getDouble(i)); } if (((bitField0_ & 0x00000008) != 0)) { output.writeDouble(5, bestObjectiveBound_); } if (getReducedCostList().size() > 0) { output.writeUInt32NoTag(50); output.writeUInt32NoTag(reducedCostMemoizedSerializedSize); } for (int i = 0; i < reducedCost_.size(); i++) { output.writeDoubleNoTag(reducedCost_.getDouble(i)); } if (((bitField0_ & 0x00000002) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 7, statusStr_); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(1, status_); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(2, objectiveValue_); } { int dataSize = 0; dataSize = 8 * getVariableValueList().size(); size += dataSize; if (!getVariableValueList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } variableValueMemoizedSerializedSize = dataSize; } { int dataSize = 0; dataSize = 8 * getDualValueList().size(); size += dataSize; if (!getDualValueList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } dualValueMemoizedSerializedSize = dataSize; } if (((bitField0_ & 0x00000008) != 0)) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(5, bestObjectiveBound_); } { int dataSize = 0; dataSize = 8 * getReducedCostList().size(); size += dataSize; if (!getReducedCostList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } reducedCostMemoizedSerializedSize = dataSize; } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(7, statusStr_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.ortools.linearsolver.MPSolutionResponse)) { return super.equals(obj); } com.google.ortools.linearsolver.MPSolutionResponse other = (com.google.ortools.linearsolver.MPSolutionResponse) obj; if (hasStatus() != other.hasStatus()) return false; if (hasStatus()) { if (status_ != other.status_) return false; } if (hasStatusStr() != other.hasStatusStr()) return false; if (hasStatusStr()) { if (!getStatusStr() .equals(other.getStatusStr())) return false; } if (hasObjectiveValue() != other.hasObjectiveValue()) return false; if (hasObjectiveValue()) { if (java.lang.Double.doubleToLongBits(getObjectiveValue()) != java.lang.Double.doubleToLongBits( other.getObjectiveValue())) return false; } if (hasBestObjectiveBound() != other.hasBestObjectiveBound()) return false; if (hasBestObjectiveBound()) { if (java.lang.Double.doubleToLongBits(getBestObjectiveBound()) != java.lang.Double.doubleToLongBits( other.getBestObjectiveBound())) return false; } if (!getVariableValueList() .equals(other.getVariableValueList())) return false; if (!getDualValueList() .equals(other.getDualValueList())) return false; if (!getReducedCostList() .equals(other.getReducedCostList())) return false; if (!unknownFields.equals(other.unknownFields)) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasStatus()) { hash = (37 * hash) + STATUS_FIELD_NUMBER; hash = (53 * hash) + status_; } if (hasStatusStr()) { hash = (37 * hash) + STATUS_STR_FIELD_NUMBER; hash = (53 * hash) + getStatusStr().hashCode(); } if (hasObjectiveValue()) { hash = (37 * hash) + OBJECTIVE_VALUE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getObjectiveValue())); } if (hasBestObjectiveBound()) { hash = (37 * hash) + BEST_OBJECTIVE_BOUND_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getBestObjectiveBound())); } if (getVariableValueCount() > 0) { hash = (37 * hash) + VARIABLE_VALUE_FIELD_NUMBER; hash = (53 * hash) + getVariableValueList().hashCode(); } if (getDualValueCount() > 0) { hash = (37 * hash) + DUAL_VALUE_FIELD_NUMBER; hash = (53 * hash) + getDualValueList().hashCode(); } if (getReducedCostCount() > 0) { hash = (37 * hash) + REDUCED_COST_FIELD_NUMBER; hash = (53 * hash) + getReducedCostList().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static com.google.ortools.linearsolver.MPSolutionResponse parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static com.google.ortools.linearsolver.MPSolutionResponse parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.google.ortools.linearsolver.MPSolutionResponse parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.google.ortools.linearsolver.MPSolutionResponse prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code operations_research.MPSolutionResponse} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:operations_research.MPSolutionResponse) com.google.ortools.linearsolver.MPSolutionResponseOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSolutionResponse_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSolutionResponse_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.ortools.linearsolver.MPSolutionResponse.class, com.google.ortools.linearsolver.MPSolutionResponse.Builder.class); } // Construct using com.google.ortools.linearsolver.MPSolutionResponse.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); status_ = 99; bitField0_ = (bitField0_ & ~0x00000001); statusStr_ = ""; bitField0_ = (bitField0_ & ~0x00000002); objectiveValue_ = 0D; bitField0_ = (bitField0_ & ~0x00000004); bestObjectiveBound_ = 0D; bitField0_ = (bitField0_ & ~0x00000008); variableValue_ = emptyDoubleList(); bitField0_ = (bitField0_ & ~0x00000010); dualValue_ = emptyDoubleList(); bitField0_ = (bitField0_ & ~0x00000020); reducedCost_ = emptyDoubleList(); bitField0_ = (bitField0_ & ~0x00000040); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSolutionResponse_descriptor; } @java.lang.Override public com.google.ortools.linearsolver.MPSolutionResponse getDefaultInstanceForType() { return com.google.ortools.linearsolver.MPSolutionResponse.getDefaultInstance(); } @java.lang.Override public com.google.ortools.linearsolver.MPSolutionResponse build() { com.google.ortools.linearsolver.MPSolutionResponse result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.ortools.linearsolver.MPSolutionResponse buildPartial() { com.google.ortools.linearsolver.MPSolutionResponse result = new com.google.ortools.linearsolver.MPSolutionResponse(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { to_bitField0_ |= 0x00000001; } result.status_ = status_; if (((from_bitField0_ & 0x00000002) != 0)) { to_bitField0_ |= 0x00000002; } result.statusStr_ = statusStr_; if (((from_bitField0_ & 0x00000004) != 0)) { result.objectiveValue_ = objectiveValue_; to_bitField0_ |= 0x00000004; } if (((from_bitField0_ & 0x00000008) != 0)) { result.bestObjectiveBound_ = bestObjectiveBound_; to_bitField0_ |= 0x00000008; } if (((bitField0_ & 0x00000010) != 0)) { variableValue_.makeImmutable(); bitField0_ = (bitField0_ & ~0x00000010); } result.variableValue_ = variableValue_; if (((bitField0_ & 0x00000020) != 0)) { dualValue_.makeImmutable(); bitField0_ = (bitField0_ & ~0x00000020); } result.dualValue_ = dualValue_; if (((bitField0_ & 0x00000040) != 0)) { reducedCost_.makeImmutable(); bitField0_ = (bitField0_ & ~0x00000040); } result.reducedCost_ = reducedCost_; result.bitField0_ = to_bitField0_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.ortools.linearsolver.MPSolutionResponse) { return mergeFrom((com.google.ortools.linearsolver.MPSolutionResponse)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.ortools.linearsolver.MPSolutionResponse other) { if (other == com.google.ortools.linearsolver.MPSolutionResponse.getDefaultInstance()) return this; if (other.hasStatus()) { setStatus(other.getStatus()); } if (other.hasStatusStr()) { bitField0_ |= 0x00000002; statusStr_ = other.statusStr_; onChanged(); } if (other.hasObjectiveValue()) { setObjectiveValue(other.getObjectiveValue()); } if (other.hasBestObjectiveBound()) { setBestObjectiveBound(other.getBestObjectiveBound()); } if (!other.variableValue_.isEmpty()) { if (variableValue_.isEmpty()) { variableValue_ = other.variableValue_; bitField0_ = (bitField0_ & ~0x00000010); } else { ensureVariableValueIsMutable(); variableValue_.addAll(other.variableValue_); } onChanged(); } if (!other.dualValue_.isEmpty()) { if (dualValue_.isEmpty()) { dualValue_ = other.dualValue_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureDualValueIsMutable(); dualValue_.addAll(other.dualValue_); } onChanged(); } if (!other.reducedCost_.isEmpty()) { if (reducedCost_.isEmpty()) { reducedCost_ = other.reducedCost_; bitField0_ = (bitField0_ & ~0x00000040); } else { ensureReducedCostIsMutable(); reducedCost_.addAll(other.reducedCost_); } onChanged(); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { com.google.ortools.linearsolver.MPSolutionResponse parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (com.google.ortools.linearsolver.MPSolutionResponse) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private int status_ = 99; /** *
     * Result of the optimization.
     * 
* * optional .operations_research.MPSolverResponseStatus status = 1 [default = MPSOLVER_UNKNOWN_STATUS]; * @return Whether the status field is set. */ @java.lang.Override public boolean hasStatus() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * Result of the optimization.
     * 
* * optional .operations_research.MPSolverResponseStatus status = 1 [default = MPSOLVER_UNKNOWN_STATUS]; * @return The status. */ @java.lang.Override public com.google.ortools.linearsolver.MPSolverResponseStatus getStatus() { @SuppressWarnings("deprecation") com.google.ortools.linearsolver.MPSolverResponseStatus result = com.google.ortools.linearsolver.MPSolverResponseStatus.valueOf(status_); return result == null ? com.google.ortools.linearsolver.MPSolverResponseStatus.MPSOLVER_UNKNOWN_STATUS : result; } /** *
     * Result of the optimization.
     * 
* * optional .operations_research.MPSolverResponseStatus status = 1 [default = MPSOLVER_UNKNOWN_STATUS]; * @param value The status to set. * @return This builder for chaining. */ public Builder setStatus(com.google.ortools.linearsolver.MPSolverResponseStatus value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000001; status_ = value.getNumber(); onChanged(); return this; } /** *
     * Result of the optimization.
     * 
* * optional .operations_research.MPSolverResponseStatus status = 1 [default = MPSOLVER_UNKNOWN_STATUS]; * @return This builder for chaining. */ public Builder clearStatus() { bitField0_ = (bitField0_ & ~0x00000001); status_ = 99; onChanged(); return this; } private java.lang.Object statusStr_ = ""; /** *
     * Human-readable string giving more details about the status. For example,
     * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
     * why the model is invalid.
     * This isn't always filled: don't depend on its value or even its presence.
     * 
* * optional string status_str = 7; * @return Whether the statusStr field is set. */ public boolean hasStatusStr() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * Human-readable string giving more details about the status. For example,
     * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
     * why the model is invalid.
     * This isn't always filled: don't depend on its value or even its presence.
     * 
* * optional string status_str = 7; * @return The statusStr. */ public java.lang.String getStatusStr() { java.lang.Object ref = statusStr_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { statusStr_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
     * Human-readable string giving more details about the status. For example,
     * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
     * why the model is invalid.
     * This isn't always filled: don't depend on its value or even its presence.
     * 
* * optional string status_str = 7; * @return The bytes for statusStr. */ public com.google.protobuf.ByteString getStatusStrBytes() { java.lang.Object ref = statusStr_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); statusStr_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
     * Human-readable string giving more details about the status. For example,
     * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
     * why the model is invalid.
     * This isn't always filled: don't depend on its value or even its presence.
     * 
* * optional string status_str = 7; * @param value The statusStr to set. * @return This builder for chaining. */ public Builder setStatusStr( java.lang.String value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000002; statusStr_ = value; onChanged(); return this; } /** *
     * Human-readable string giving more details about the status. For example,
     * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
     * why the model is invalid.
     * This isn't always filled: don't depend on its value or even its presence.
     * 
* * optional string status_str = 7; * @return This builder for chaining. */ public Builder clearStatusStr() { bitField0_ = (bitField0_ & ~0x00000002); statusStr_ = getDefaultInstance().getStatusStr(); onChanged(); return this; } /** *
     * Human-readable string giving more details about the status. For example,
     * when the status is MPSOLVER_INVALID_MODE, this can hold a description of
     * why the model is invalid.
     * This isn't always filled: don't depend on its value or even its presence.
     * 
* * optional string status_str = 7; * @param value The bytes for statusStr to set. * @return This builder for chaining. */ public Builder setStatusStrBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000002; statusStr_ = value; onChanged(); return this; } private double objectiveValue_ ; /** *
     * Objective value corresponding to the "variable_value" below, taking into
     * account the source "objective_offset" and "objective_coefficient".
     * This is set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * optional double objective_value = 2; * @return Whether the objectiveValue field is set. */ @java.lang.Override public boolean hasObjectiveValue() { return ((bitField0_ & 0x00000004) != 0); } /** *
     * Objective value corresponding to the "variable_value" below, taking into
     * account the source "objective_offset" and "objective_coefficient".
     * This is set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * optional double objective_value = 2; * @return The objectiveValue. */ @java.lang.Override public double getObjectiveValue() { return objectiveValue_; } /** *
     * Objective value corresponding to the "variable_value" below, taking into
     * account the source "objective_offset" and "objective_coefficient".
     * This is set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * optional double objective_value = 2; * @param value The objectiveValue to set. * @return This builder for chaining. */ public Builder setObjectiveValue(double value) { bitField0_ |= 0x00000004; objectiveValue_ = value; onChanged(); return this; } /** *
     * Objective value corresponding to the "variable_value" below, taking into
     * account the source "objective_offset" and "objective_coefficient".
     * This is set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * optional double objective_value = 2; * @return This builder for chaining. */ public Builder clearObjectiveValue() { bitField0_ = (bitField0_ & ~0x00000004); objectiveValue_ = 0D; onChanged(); return this; } private double bestObjectiveBound_ ; /** *
     * This field is only filled for MIP problems. For a minimization problem,
     * this is a lower bound on the optimal objective value. For a maximization
     * problem, it is an upper bound. It is only filled if the status is OPTIMAL
     * or FEASIBLE. In the former case, best_objective_bound should be equal to
     * objective_value (modulo numerical errors).
     * 
* * optional double best_objective_bound = 5; * @return Whether the bestObjectiveBound field is set. */ @java.lang.Override public boolean hasBestObjectiveBound() { return ((bitField0_ & 0x00000008) != 0); } /** *
     * This field is only filled for MIP problems. For a minimization problem,
     * this is a lower bound on the optimal objective value. For a maximization
     * problem, it is an upper bound. It is only filled if the status is OPTIMAL
     * or FEASIBLE. In the former case, best_objective_bound should be equal to
     * objective_value (modulo numerical errors).
     * 
* * optional double best_objective_bound = 5; * @return The bestObjectiveBound. */ @java.lang.Override public double getBestObjectiveBound() { return bestObjectiveBound_; } /** *
     * This field is only filled for MIP problems. For a minimization problem,
     * this is a lower bound on the optimal objective value. For a maximization
     * problem, it is an upper bound. It is only filled if the status is OPTIMAL
     * or FEASIBLE. In the former case, best_objective_bound should be equal to
     * objective_value (modulo numerical errors).
     * 
* * optional double best_objective_bound = 5; * @param value The bestObjectiveBound to set. * @return This builder for chaining. */ public Builder setBestObjectiveBound(double value) { bitField0_ |= 0x00000008; bestObjectiveBound_ = value; onChanged(); return this; } /** *
     * This field is only filled for MIP problems. For a minimization problem,
     * this is a lower bound on the optimal objective value. For a maximization
     * problem, it is an upper bound. It is only filled if the status is OPTIMAL
     * or FEASIBLE. In the former case, best_objective_bound should be equal to
     * objective_value (modulo numerical errors).
     * 
* * optional double best_objective_bound = 5; * @return This builder for chaining. */ public Builder clearBestObjectiveBound() { bitField0_ = (bitField0_ & ~0x00000008); bestObjectiveBound_ = 0D; onChanged(); return this; } private com.google.protobuf.Internal.DoubleList variableValue_ = emptyDoubleList(); private void ensureVariableValueIsMutable() { if (!((bitField0_ & 0x00000010) != 0)) { variableValue_ = mutableCopy(variableValue_); bitField0_ |= 0x00000010; } } /** *
     * Variable values in the same order as the MPModelProto::variable field.
     * This is a dense representation. These are set iff 'status' is OPTIMAL or
     * FEASIBLE.
     * 
* * repeated double variable_value = 3 [packed = true]; * @return A list containing the variableValue. */ public java.util.List getVariableValueList() { return ((bitField0_ & 0x00000010) != 0) ? java.util.Collections.unmodifiableList(variableValue_) : variableValue_; } /** *
     * Variable values in the same order as the MPModelProto::variable field.
     * This is a dense representation. These are set iff 'status' is OPTIMAL or
     * FEASIBLE.
     * 
* * repeated double variable_value = 3 [packed = true]; * @return The count of variableValue. */ public int getVariableValueCount() { return variableValue_.size(); } /** *
     * Variable values in the same order as the MPModelProto::variable field.
     * This is a dense representation. These are set iff 'status' is OPTIMAL or
     * FEASIBLE.
     * 
* * repeated double variable_value = 3 [packed = true]; * @param index The index of the element to return. * @return The variableValue at the given index. */ public double getVariableValue(int index) { return variableValue_.getDouble(index); } /** *
     * Variable values in the same order as the MPModelProto::variable field.
     * This is a dense representation. These are set iff 'status' is OPTIMAL or
     * FEASIBLE.
     * 
* * repeated double variable_value = 3 [packed = true]; * @param index The index to set the value at. * @param value The variableValue to set. * @return This builder for chaining. */ public Builder setVariableValue( int index, double value) { ensureVariableValueIsMutable(); variableValue_.setDouble(index, value); onChanged(); return this; } /** *
     * Variable values in the same order as the MPModelProto::variable field.
     * This is a dense representation. These are set iff 'status' is OPTIMAL or
     * FEASIBLE.
     * 
* * repeated double variable_value = 3 [packed = true]; * @param value The variableValue to add. * @return This builder for chaining. */ public Builder addVariableValue(double value) { ensureVariableValueIsMutable(); variableValue_.addDouble(value); onChanged(); return this; } /** *
     * Variable values in the same order as the MPModelProto::variable field.
     * This is a dense representation. These are set iff 'status' is OPTIMAL or
     * FEASIBLE.
     * 
* * repeated double variable_value = 3 [packed = true]; * @param values The variableValue to add. * @return This builder for chaining. */ public Builder addAllVariableValue( java.lang.Iterable values) { ensureVariableValueIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, variableValue_); onChanged(); return this; } /** *
     * Variable values in the same order as the MPModelProto::variable field.
     * This is a dense representation. These are set iff 'status' is OPTIMAL or
     * FEASIBLE.
     * 
* * repeated double variable_value = 3 [packed = true]; * @return This builder for chaining. */ public Builder clearVariableValue() { variableValue_ = emptyDoubleList(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); return this; } private com.google.protobuf.Internal.DoubleList dualValue_ = emptyDoubleList(); private void ensureDualValueIsMutable() { if (!((bitField0_ & 0x00000020) != 0)) { dualValue_ = mutableCopy(dualValue_); bitField0_ |= 0x00000020; } } /** *
     * [Advanced usage.]
     * Values of the dual variables values in the same order as the
     * MPModelProto::constraint field. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if
     * it is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double dual_value = 4 [packed = true]; * @return A list containing the dualValue. */ public java.util.List getDualValueList() { return ((bitField0_ & 0x00000020) != 0) ? java.util.Collections.unmodifiableList(dualValue_) : dualValue_; } /** *
     * [Advanced usage.]
     * Values of the dual variables values in the same order as the
     * MPModelProto::constraint field. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if
     * it is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double dual_value = 4 [packed = true]; * @return The count of dualValue. */ public int getDualValueCount() { return dualValue_.size(); } /** *
     * [Advanced usage.]
     * Values of the dual variables values in the same order as the
     * MPModelProto::constraint field. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if
     * it is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double dual_value = 4 [packed = true]; * @param index The index of the element to return. * @return The dualValue at the given index. */ public double getDualValue(int index) { return dualValue_.getDouble(index); } /** *
     * [Advanced usage.]
     * Values of the dual variables values in the same order as the
     * MPModelProto::constraint field. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if
     * it is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double dual_value = 4 [packed = true]; * @param index The index to set the value at. * @param value The dualValue to set. * @return This builder for chaining. */ public Builder setDualValue( int index, double value) { ensureDualValueIsMutable(); dualValue_.setDouble(index, value); onChanged(); return this; } /** *
     * [Advanced usage.]
     * Values of the dual variables values in the same order as the
     * MPModelProto::constraint field. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if
     * it is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double dual_value = 4 [packed = true]; * @param value The dualValue to add. * @return This builder for chaining. */ public Builder addDualValue(double value) { ensureDualValueIsMutable(); dualValue_.addDouble(value); onChanged(); return this; } /** *
     * [Advanced usage.]
     * Values of the dual variables values in the same order as the
     * MPModelProto::constraint field. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if
     * it is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double dual_value = 4 [packed = true]; * @param values The dualValue to add. * @return This builder for chaining. */ public Builder addAllDualValue( java.lang.Iterable values) { ensureDualValueIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, dualValue_); onChanged(); return this; } /** *
     * [Advanced usage.]
     * Values of the dual variables values in the same order as the
     * MPModelProto::constraint field. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if
     * it is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double dual_value = 4 [packed = true]; * @return This builder for chaining. */ public Builder clearDualValue() { dualValue_ = emptyDoubleList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); return this; } private com.google.protobuf.Internal.DoubleList reducedCost_ = emptyDoubleList(); private void ensureReducedCostIsMutable() { if (!((bitField0_ & 0x00000040) != 0)) { reducedCost_ = mutableCopy(reducedCost_); bitField0_ |= 0x00000040; } } /** *
     * [Advanced usage.]
     * Values of the reduced cost of the variables in the same order as the
     * MPModelProto::variable. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if it
     * is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double reduced_cost = 6 [packed = true]; * @return A list containing the reducedCost. */ public java.util.List getReducedCostList() { return ((bitField0_ & 0x00000040) != 0) ? java.util.Collections.unmodifiableList(reducedCost_) : reducedCost_; } /** *
     * [Advanced usage.]
     * Values of the reduced cost of the variables in the same order as the
     * MPModelProto::variable. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if it
     * is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double reduced_cost = 6 [packed = true]; * @return The count of reducedCost. */ public int getReducedCostCount() { return reducedCost_.size(); } /** *
     * [Advanced usage.]
     * Values of the reduced cost of the variables in the same order as the
     * MPModelProto::variable. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if it
     * is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double reduced_cost = 6 [packed = true]; * @param index The index of the element to return. * @return The reducedCost at the given index. */ public double getReducedCost(int index) { return reducedCost_.getDouble(index); } /** *
     * [Advanced usage.]
     * Values of the reduced cost of the variables in the same order as the
     * MPModelProto::variable. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if it
     * is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double reduced_cost = 6 [packed = true]; * @param index The index to set the value at. * @param value The reducedCost to set. * @return This builder for chaining. */ public Builder setReducedCost( int index, double value) { ensureReducedCostIsMutable(); reducedCost_.setDouble(index, value); onChanged(); return this; } /** *
     * [Advanced usage.]
     * Values of the reduced cost of the variables in the same order as the
     * MPModelProto::variable. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if it
     * is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double reduced_cost = 6 [packed = true]; * @param value The reducedCost to add. * @return This builder for chaining. */ public Builder addReducedCost(double value) { ensureReducedCostIsMutable(); reducedCost_.addDouble(value); onChanged(); return this; } /** *
     * [Advanced usage.]
     * Values of the reduced cost of the variables in the same order as the
     * MPModelProto::variable. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if it
     * is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double reduced_cost = 6 [packed = true]; * @param values The reducedCost to add. * @return This builder for chaining. */ public Builder addAllReducedCost( java.lang.Iterable values) { ensureReducedCostIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, reducedCost_); onChanged(); return this; } /** *
     * [Advanced usage.]
     * Values of the reduced cost of the variables in the same order as the
     * MPModelProto::variable. This is a dense representation.
     * These are not set if the problem was solved with a MIP solver (even if it
     * is actually a linear program).
     * These are set iff 'status' is OPTIMAL or FEASIBLE.
     * 
* * repeated double reduced_cost = 6 [packed = true]; * @return This builder for chaining. */ public Builder clearReducedCost() { reducedCost_ = emptyDoubleList(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:operations_research.MPSolutionResponse) } // @@protoc_insertion_point(class_scope:operations_research.MPSolutionResponse) private static final com.google.ortools.linearsolver.MPSolutionResponse DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.ortools.linearsolver.MPSolutionResponse(); } public static com.google.ortools.linearsolver.MPSolutionResponse getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public MPSolutionResponse parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new MPSolutionResponse(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.ortools.linearsolver.MPSolutionResponse getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy