com.google.ortools.linearsolver.MPSosConstraint Maven / Gradle / Ivy
The newest version!
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: ortools/linear_solver/linear_solver.proto
package com.google.ortools.linearsolver;
/**
*
* Special Ordered Set (SOS) constraints of type 1 or 2.
* See https://en.wikipedia.org/wiki/Special_ordered_set
* As of 2019/04, only SCIP and Gurobi support this constraint type.
*
*
* Protobuf type {@code operations_research.MPSosConstraint}
*/
public final class MPSosConstraint extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:operations_research.MPSosConstraint)
MPSosConstraintOrBuilder {
private static final long serialVersionUID = 0L;
// Use MPSosConstraint.newBuilder() to construct.
private MPSosConstraint(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private MPSosConstraint() {
type_ = 0;
varIndex_ = emptyIntList();
weight_ = emptyDoubleList();
}
@java.lang.Override
@SuppressWarnings({"unused"})
protected java.lang.Object newInstance(
UnusedPrivateParameter unused) {
return new MPSosConstraint();
}
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet
getUnknownFields() {
return this.unknownFields;
}
private MPSosConstraint(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
this();
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
int mutable_bitField0_ = 0;
com.google.protobuf.UnknownFieldSet.Builder unknownFields =
com.google.protobuf.UnknownFieldSet.newBuilder();
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
case 8: {
int rawValue = input.readEnum();
@SuppressWarnings("deprecation")
com.google.ortools.linearsolver.MPSosConstraint.Type value = com.google.ortools.linearsolver.MPSosConstraint.Type.valueOf(rawValue);
if (value == null) {
unknownFields.mergeVarintField(1, rawValue);
} else {
bitField0_ |= 0x00000001;
type_ = rawValue;
}
break;
}
case 16: {
if (!((mutable_bitField0_ & 0x00000002) != 0)) {
varIndex_ = newIntList();
mutable_bitField0_ |= 0x00000002;
}
varIndex_.addInt(input.readInt32());
break;
}
case 18: {
int length = input.readRawVarint32();
int limit = input.pushLimit(length);
if (!((mutable_bitField0_ & 0x00000002) != 0) && input.getBytesUntilLimit() > 0) {
varIndex_ = newIntList();
mutable_bitField0_ |= 0x00000002;
}
while (input.getBytesUntilLimit() > 0) {
varIndex_.addInt(input.readInt32());
}
input.popLimit(limit);
break;
}
case 25: {
if (!((mutable_bitField0_ & 0x00000004) != 0)) {
weight_ = newDoubleList();
mutable_bitField0_ |= 0x00000004;
}
weight_.addDouble(input.readDouble());
break;
}
case 26: {
int length = input.readRawVarint32();
int limit = input.pushLimit(length);
if (!((mutable_bitField0_ & 0x00000004) != 0) && input.getBytesUntilLimit() > 0) {
weight_ = newDoubleList();
mutable_bitField0_ |= 0x00000004;
}
while (input.getBytesUntilLimit() > 0) {
weight_.addDouble(input.readDouble());
}
input.popLimit(limit);
break;
}
default: {
if (!parseUnknownField(
input, unknownFields, extensionRegistry, tag)) {
done = true;
}
break;
}
}
}
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(
e).setUnfinishedMessage(this);
} finally {
if (((mutable_bitField0_ & 0x00000002) != 0)) {
varIndex_.makeImmutable(); // C
}
if (((mutable_bitField0_ & 0x00000004) != 0)) {
weight_.makeImmutable(); // C
}
this.unknownFields = unknownFields.build();
makeExtensionsImmutable();
}
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSosConstraint_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSosConstraint_fieldAccessorTable
.ensureFieldAccessorsInitialized(
com.google.ortools.linearsolver.MPSosConstraint.class, com.google.ortools.linearsolver.MPSosConstraint.Builder.class);
}
/**
* Protobuf enum {@code operations_research.MPSosConstraint.Type}
*/
public enum Type
implements com.google.protobuf.ProtocolMessageEnum {
/**
*
* At most one variable in `var_index` must be non-zero.
*
*
* SOS1_DEFAULT = 0;
*/
SOS1_DEFAULT(0),
/**
*
* At most two consecutive variables from `var_index` can be non-zero (i.e.
* for some i, var_index[i] and var_index[i+1]). See
* http://www.eudoxus.com/lp-training/5/5-6-special-ordered-sets-of-type-2
*
*
* SOS2 = 1;
*/
SOS2(1),
;
/**
*
* At most one variable in `var_index` must be non-zero.
*
*
* SOS1_DEFAULT = 0;
*/
public static final int SOS1_DEFAULT_VALUE = 0;
/**
*
* At most two consecutive variables from `var_index` can be non-zero (i.e.
* for some i, var_index[i] and var_index[i+1]). See
* http://www.eudoxus.com/lp-training/5/5-6-special-ordered-sets-of-type-2
*
*
* SOS2 = 1;
*/
public static final int SOS2_VALUE = 1;
public final int getNumber() {
return value;
}
/**
* @param value The numeric wire value of the corresponding enum entry.
* @return The enum associated with the given numeric wire value.
* @deprecated Use {@link #forNumber(int)} instead.
*/
@java.lang.Deprecated
public static Type valueOf(int value) {
return forNumber(value);
}
/**
* @param value The numeric wire value of the corresponding enum entry.
* @return The enum associated with the given numeric wire value.
*/
public static Type forNumber(int value) {
switch (value) {
case 0: return SOS1_DEFAULT;
case 1: return SOS2;
default: return null;
}
}
public static com.google.protobuf.Internal.EnumLiteMap
internalGetValueMap() {
return internalValueMap;
}
private static final com.google.protobuf.Internal.EnumLiteMap<
Type> internalValueMap =
new com.google.protobuf.Internal.EnumLiteMap() {
public Type findValueByNumber(int number) {
return Type.forNumber(number);
}
};
public final com.google.protobuf.Descriptors.EnumValueDescriptor
getValueDescriptor() {
return getDescriptor().getValues().get(ordinal());
}
public final com.google.protobuf.Descriptors.EnumDescriptor
getDescriptorForType() {
return getDescriptor();
}
public static final com.google.protobuf.Descriptors.EnumDescriptor
getDescriptor() {
return com.google.ortools.linearsolver.MPSosConstraint.getDescriptor().getEnumTypes().get(0);
}
private static final Type[] VALUES = values();
public static Type valueOf(
com.google.protobuf.Descriptors.EnumValueDescriptor desc) {
if (desc.getType() != getDescriptor()) {
throw new java.lang.IllegalArgumentException(
"EnumValueDescriptor is not for this type.");
}
return VALUES[desc.getIndex()];
}
private final int value;
private Type(int value) {
this.value = value;
}
// @@protoc_insertion_point(enum_scope:operations_research.MPSosConstraint.Type)
}
private int bitField0_;
public static final int TYPE_FIELD_NUMBER = 1;
private int type_;
/**
* optional .operations_research.MPSosConstraint.Type type = 1 [default = SOS1_DEFAULT];
* @return Whether the type field is set.
*/
@java.lang.Override public boolean hasType() {
return ((bitField0_ & 0x00000001) != 0);
}
/**
* optional .operations_research.MPSosConstraint.Type type = 1 [default = SOS1_DEFAULT];
* @return The type.
*/
@java.lang.Override public com.google.ortools.linearsolver.MPSosConstraint.Type getType() {
@SuppressWarnings("deprecation")
com.google.ortools.linearsolver.MPSosConstraint.Type result = com.google.ortools.linearsolver.MPSosConstraint.Type.valueOf(type_);
return result == null ? com.google.ortools.linearsolver.MPSosConstraint.Type.SOS1_DEFAULT : result;
}
public static final int VAR_INDEX_FIELD_NUMBER = 2;
private com.google.protobuf.Internal.IntList varIndex_;
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @return A list containing the varIndex.
*/
@java.lang.Override
public java.util.List
getVarIndexList() {
return varIndex_;
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @return The count of varIndex.
*/
public int getVarIndexCount() {
return varIndex_.size();
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @param index The index of the element to return.
* @return The varIndex at the given index.
*/
public int getVarIndex(int index) {
return varIndex_.getInt(index);
}
public static final int WEIGHT_FIELD_NUMBER = 3;
private com.google.protobuf.Internal.DoubleList weight_;
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @return A list containing the weight.
*/
@java.lang.Override
public java.util.List
getWeightList() {
return weight_;
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @return The count of weight.
*/
public int getWeightCount() {
return weight_.size();
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @param index The index of the element to return.
* @return The weight at the given index.
*/
public double getWeight(int index) {
return weight_.getDouble(index);
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
if (((bitField0_ & 0x00000001) != 0)) {
output.writeEnum(1, type_);
}
for (int i = 0; i < varIndex_.size(); i++) {
output.writeInt32(2, varIndex_.getInt(i));
}
for (int i = 0; i < weight_.size(); i++) {
output.writeDouble(3, weight_.getDouble(i));
}
unknownFields.writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (((bitField0_ & 0x00000001) != 0)) {
size += com.google.protobuf.CodedOutputStream
.computeEnumSize(1, type_);
}
{
int dataSize = 0;
for (int i = 0; i < varIndex_.size(); i++) {
dataSize += com.google.protobuf.CodedOutputStream
.computeInt32SizeNoTag(varIndex_.getInt(i));
}
size += dataSize;
size += 1 * getVarIndexList().size();
}
{
int dataSize = 0;
dataSize = 8 * getWeightList().size();
size += dataSize;
size += 1 * getWeightList().size();
}
size += unknownFields.getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof com.google.ortools.linearsolver.MPSosConstraint)) {
return super.equals(obj);
}
com.google.ortools.linearsolver.MPSosConstraint other = (com.google.ortools.linearsolver.MPSosConstraint) obj;
if (hasType() != other.hasType()) return false;
if (hasType()) {
if (type_ != other.type_) return false;
}
if (!getVarIndexList()
.equals(other.getVarIndexList())) return false;
if (!getWeightList()
.equals(other.getWeightList())) return false;
if (!unknownFields.equals(other.unknownFields)) return false;
return true;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
if (hasType()) {
hash = (37 * hash) + TYPE_FIELD_NUMBER;
hash = (53 * hash) + type_;
}
if (getVarIndexCount() > 0) {
hash = (37 * hash) + VAR_INDEX_FIELD_NUMBER;
hash = (53 * hash) + getVarIndexList().hashCode();
}
if (getWeightCount() > 0) {
hash = (37 * hash) + WEIGHT_FIELD_NUMBER;
hash = (53 * hash) + getWeightList().hashCode();
}
hash = (29 * hash) + unknownFields.hashCode();
memoizedHashCode = hash;
return hash;
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static com.google.ortools.linearsolver.MPSosConstraint parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(com.google.ortools.linearsolver.MPSosConstraint prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* Special Ordered Set (SOS) constraints of type 1 or 2.
* See https://en.wikipedia.org/wiki/Special_ordered_set
* As of 2019/04, only SCIP and Gurobi support this constraint type.
*
*
* Protobuf type {@code operations_research.MPSosConstraint}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:operations_research.MPSosConstraint)
com.google.ortools.linearsolver.MPSosConstraintOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSosConstraint_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSosConstraint_fieldAccessorTable
.ensureFieldAccessorsInitialized(
com.google.ortools.linearsolver.MPSosConstraint.class, com.google.ortools.linearsolver.MPSosConstraint.Builder.class);
}
// Construct using com.google.ortools.linearsolver.MPSosConstraint.newBuilder()
private Builder() {
maybeForceBuilderInitialization();
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
maybeForceBuilderInitialization();
}
private void maybeForceBuilderInitialization() {
if (com.google.protobuf.GeneratedMessageV3
.alwaysUseFieldBuilders) {
}
}
@java.lang.Override
public Builder clear() {
super.clear();
type_ = 0;
bitField0_ = (bitField0_ & ~0x00000001);
varIndex_ = emptyIntList();
bitField0_ = (bitField0_ & ~0x00000002);
weight_ = emptyDoubleList();
bitField0_ = (bitField0_ & ~0x00000004);
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return com.google.ortools.linearsolver.LinearSolver.internal_static_operations_research_MPSosConstraint_descriptor;
}
@java.lang.Override
public com.google.ortools.linearsolver.MPSosConstraint getDefaultInstanceForType() {
return com.google.ortools.linearsolver.MPSosConstraint.getDefaultInstance();
}
@java.lang.Override
public com.google.ortools.linearsolver.MPSosConstraint build() {
com.google.ortools.linearsolver.MPSosConstraint result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public com.google.ortools.linearsolver.MPSosConstraint buildPartial() {
com.google.ortools.linearsolver.MPSosConstraint result = new com.google.ortools.linearsolver.MPSosConstraint(this);
int from_bitField0_ = bitField0_;
int to_bitField0_ = 0;
if (((from_bitField0_ & 0x00000001) != 0)) {
to_bitField0_ |= 0x00000001;
}
result.type_ = type_;
if (((bitField0_ & 0x00000002) != 0)) {
varIndex_.makeImmutable();
bitField0_ = (bitField0_ & ~0x00000002);
}
result.varIndex_ = varIndex_;
if (((bitField0_ & 0x00000004) != 0)) {
weight_.makeImmutable();
bitField0_ = (bitField0_ & ~0x00000004);
}
result.weight_ = weight_;
result.bitField0_ = to_bitField0_;
onBuilt();
return result;
}
@java.lang.Override
public Builder clone() {
return super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.setField(field, value);
}
@java.lang.Override
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof com.google.ortools.linearsolver.MPSosConstraint) {
return mergeFrom((com.google.ortools.linearsolver.MPSosConstraint)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(com.google.ortools.linearsolver.MPSosConstraint other) {
if (other == com.google.ortools.linearsolver.MPSosConstraint.getDefaultInstance()) return this;
if (other.hasType()) {
setType(other.getType());
}
if (!other.varIndex_.isEmpty()) {
if (varIndex_.isEmpty()) {
varIndex_ = other.varIndex_;
bitField0_ = (bitField0_ & ~0x00000002);
} else {
ensureVarIndexIsMutable();
varIndex_.addAll(other.varIndex_);
}
onChanged();
}
if (!other.weight_.isEmpty()) {
if (weight_.isEmpty()) {
weight_ = other.weight_;
bitField0_ = (bitField0_ & ~0x00000004);
} else {
ensureWeightIsMutable();
weight_.addAll(other.weight_);
}
onChanged();
}
this.mergeUnknownFields(other.unknownFields);
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
com.google.ortools.linearsolver.MPSosConstraint parsedMessage = null;
try {
parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
parsedMessage = (com.google.ortools.linearsolver.MPSosConstraint) e.getUnfinishedMessage();
throw e.unwrapIOException();
} finally {
if (parsedMessage != null) {
mergeFrom(parsedMessage);
}
}
return this;
}
private int bitField0_;
private int type_ = 0;
/**
* optional .operations_research.MPSosConstraint.Type type = 1 [default = SOS1_DEFAULT];
* @return Whether the type field is set.
*/
@java.lang.Override public boolean hasType() {
return ((bitField0_ & 0x00000001) != 0);
}
/**
* optional .operations_research.MPSosConstraint.Type type = 1 [default = SOS1_DEFAULT];
* @return The type.
*/
@java.lang.Override
public com.google.ortools.linearsolver.MPSosConstraint.Type getType() {
@SuppressWarnings("deprecation")
com.google.ortools.linearsolver.MPSosConstraint.Type result = com.google.ortools.linearsolver.MPSosConstraint.Type.valueOf(type_);
return result == null ? com.google.ortools.linearsolver.MPSosConstraint.Type.SOS1_DEFAULT : result;
}
/**
* optional .operations_research.MPSosConstraint.Type type = 1 [default = SOS1_DEFAULT];
* @param value The type to set.
* @return This builder for chaining.
*/
public Builder setType(com.google.ortools.linearsolver.MPSosConstraint.Type value) {
if (value == null) {
throw new NullPointerException();
}
bitField0_ |= 0x00000001;
type_ = value.getNumber();
onChanged();
return this;
}
/**
* optional .operations_research.MPSosConstraint.Type type = 1 [default = SOS1_DEFAULT];
* @return This builder for chaining.
*/
public Builder clearType() {
bitField0_ = (bitField0_ & ~0x00000001);
type_ = 0;
onChanged();
return this;
}
private com.google.protobuf.Internal.IntList varIndex_ = emptyIntList();
private void ensureVarIndexIsMutable() {
if (!((bitField0_ & 0x00000002) != 0)) {
varIndex_ = mutableCopy(varIndex_);
bitField0_ |= 0x00000002;
}
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @return A list containing the varIndex.
*/
public java.util.List
getVarIndexList() {
return ((bitField0_ & 0x00000002) != 0) ?
java.util.Collections.unmodifiableList(varIndex_) : varIndex_;
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @return The count of varIndex.
*/
public int getVarIndexCount() {
return varIndex_.size();
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @param index The index of the element to return.
* @return The varIndex at the given index.
*/
public int getVarIndex(int index) {
return varIndex_.getInt(index);
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @param index The index to set the value at.
* @param value The varIndex to set.
* @return This builder for chaining.
*/
public Builder setVarIndex(
int index, int value) {
ensureVarIndexIsMutable();
varIndex_.setInt(index, value);
onChanged();
return this;
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @param value The varIndex to add.
* @return This builder for chaining.
*/
public Builder addVarIndex(int value) {
ensureVarIndexIsMutable();
varIndex_.addInt(value);
onChanged();
return this;
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @param values The varIndex to add.
* @return This builder for chaining.
*/
public Builder addAllVarIndex(
java.lang.Iterable extends java.lang.Integer> values) {
ensureVarIndexIsMutable();
com.google.protobuf.AbstractMessageLite.Builder.addAll(
values, varIndex_);
onChanged();
return this;
}
/**
*
* Variable index (w.r.t. the "variable" field of MPModelProto) of the
* variables in the SOS.
*
*
* repeated int32 var_index = 2;
* @return This builder for chaining.
*/
public Builder clearVarIndex() {
varIndex_ = emptyIntList();
bitField0_ = (bitField0_ & ~0x00000002);
onChanged();
return this;
}
private com.google.protobuf.Internal.DoubleList weight_ = emptyDoubleList();
private void ensureWeightIsMutable() {
if (!((bitField0_ & 0x00000004) != 0)) {
weight_ = mutableCopy(weight_);
bitField0_ |= 0x00000004;
}
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @return A list containing the weight.
*/
public java.util.List
getWeightList() {
return ((bitField0_ & 0x00000004) != 0) ?
java.util.Collections.unmodifiableList(weight_) : weight_;
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @return The count of weight.
*/
public int getWeightCount() {
return weight_.size();
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @param index The index of the element to return.
* @return The weight at the given index.
*/
public double getWeight(int index) {
return weight_.getDouble(index);
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @param index The index to set the value at.
* @param value The weight to set.
* @return This builder for chaining.
*/
public Builder setWeight(
int index, double value) {
ensureWeightIsMutable();
weight_.setDouble(index, value);
onChanged();
return this;
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @param value The weight to add.
* @return This builder for chaining.
*/
public Builder addWeight(double value) {
ensureWeightIsMutable();
weight_.addDouble(value);
onChanged();
return this;
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @param values The weight to add.
* @return This builder for chaining.
*/
public Builder addAllWeight(
java.lang.Iterable extends java.lang.Double> values) {
ensureWeightIsMutable();
com.google.protobuf.AbstractMessageLite.Builder.addAll(
values, weight_);
onChanged();
return this;
}
/**
*
* Optional: SOS weights. If non-empty, must be of the same size as
* "var_index", and strictly increasing. If empty and required by the
* underlying solver, the 1..n sequence will be given as weights.
* SUBTLE: The weights can help the solver make branch-and-bound decisions
* that fit the underlying optimization model: after each LP relaxation, it
* will compute the "average weight" of the SOS variables, weighted by value
* (this is confusing: here we're using the values as weights), and the binary
* branch decision will be: is the non-zero variable above or below that?
* (weights are strictly monotonous, so the "cutoff" average weight
* corresponds to a "cutoff" index in the var_index sequence).
*
*
* repeated double weight = 3;
* @return This builder for chaining.
*/
public Builder clearWeight() {
weight_ = emptyDoubleList();
bitField0_ = (bitField0_ & ~0x00000004);
onChanged();
return this;
}
@java.lang.Override
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFields(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:operations_research.MPSosConstraint)
}
// @@protoc_insertion_point(class_scope:operations_research.MPSosConstraint)
private static final com.google.ortools.linearsolver.MPSosConstraint DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new com.google.ortools.linearsolver.MPSosConstraint();
}
public static com.google.ortools.linearsolver.MPSosConstraint getDefaultInstance() {
return DEFAULT_INSTANCE;
}
@java.lang.Deprecated public static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
@java.lang.Override
public MPSosConstraint parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return new MPSosConstraint(input, extensionRegistry);
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public com.google.ortools.linearsolver.MPSosConstraint getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy