All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.trove.impl.hash.THash Maven / Gradle / Ivy

///////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2001, Eric D. Friedman All Rights Reserved.
// Copyright (c) 2009, Rob Eden All Rights Reserved.
// Copyright (c) 2009, Jeff Randall All Rights Reserved.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
///////////////////////////////////////////////////////////////////////////////

package gnu.trove.impl.hash;

import gnu.trove.impl.Constants;
import gnu.trove.impl.HashFunctions;
import gnu.trove.impl.PrimeFinder;

import java.io.Externalizable;
import java.io.ObjectOutput;
import java.io.IOException;
import java.io.ObjectInput;



/**
 * Base class for hashtables that use open addressing to resolve
 * collisions.
 *
 * Created: Wed Nov 28 21:11:16 2001
 *
 * @author Eric D. Friedman
 * @author Rob Eden (auto-compaction)
 * @author Jeff Randall
 *
 * @version $Id: THash.java,v 1.1.2.4 2010/03/02 00:55:34 robeden Exp $
 */
abstract public class THash implements Externalizable {
    @SuppressWarnings( { "UnusedDeclaration" } )
    static final long serialVersionUID = -1792948471915530295L;

    /** the load above which rehashing occurs. */
    protected static final float DEFAULT_LOAD_FACTOR = Constants.DEFAULT_LOAD_FACTOR;

    /**
     * the default initial capacity for the hash table.  This is one
     * less than a prime value because one is added to it when
     * searching for a prime capacity to account for the free slot
     * required by open addressing. Thus, the real default capacity is
     * 11.
     */
    protected static final int DEFAULT_CAPACITY = Constants.DEFAULT_CAPACITY;


    /** the current number of occupied slots in the hash. */
    protected transient int _size;

    /** the current number of free slots in the hash. */
    protected transient int _free;

    /**
     * Determines how full the internal table can become before
     * rehashing is required. This must be a value in the range: 0.0 <
     * loadFactor < 1.0.  The default value is 0.5, which is about as
     * large as you can get in open addressing without hurting
     * performance.  Cf. Knuth, Volume 3., Chapter 6.
     */
    protected float _loadFactor;

    /**
     * The maximum number of elements allowed without allocating more
     * space.
     */
    protected int _maxSize;


    /** The number of removes that should be performed before an auto-compaction occurs. */
    protected int _autoCompactRemovesRemaining;

    /**
     * The auto-compaction factor for the table.
     *
     * @see #setAutoCompactionFactor
     */
    protected float _autoCompactionFactor;

    /** @see #tempDisableAutoCompaction */
    protected transient boolean _autoCompactTemporaryDisable = false;


    /**
     * Creates a new THash instance with the default
     * capacity and load factor.
     */
    public THash() {
        this( DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR );
    }


    /**
     * Creates a new THash instance with a prime capacity
     * at or near the specified capacity and with the default load
     * factor.
     *
     * @param initialCapacity an int value
     */
    public THash( int initialCapacity ) {
        this( initialCapacity, DEFAULT_LOAD_FACTOR );
    }


    /**
     * Creates a new THash instance with a prime capacity
     * at or near the minimum needed to hold initialCapacity
     * elements with load factor loadFactor without triggering
     * a rehash.
     *
     * @param initialCapacity an int value
     * @param loadFactor      a float value
     */
    public THash( int initialCapacity, float loadFactor ) {
        super();
        _loadFactor = loadFactor;

        // Through testing, the load factor (especially the default load factor) has been
        // found to be a pretty good starting auto-compaction factor.
        _autoCompactionFactor = loadFactor;

        setUp( HashFunctions.fastCeil( initialCapacity / loadFactor ) );
    }


    /**
     * Tells whether this set is currently holding any elements.
     *
     * @return a boolean value
     */
    public boolean isEmpty() {
        return 0 == _size;
    }


    /**
     * Returns the number of distinct elements in this collection.
     *
     * @return an int value
     */
    public int size() {
        return _size;
    }


    /** @return the current physical capacity of the hash table. */
    abstract public int capacity();


    /**
     * Ensure that this hashtable has sufficient capacity to hold
     * desiredCapacity additional elements without
     * requiring a rehash.  This is a tuning method you can call
     * before doing a large insert.
     *
     * @param desiredCapacity an int value
     */
    public void ensureCapacity( int desiredCapacity ) {
        if ( desiredCapacity > ( _maxSize - size() ) ) {
			rehash( PrimeFinder.nextPrime( Math.max( size() + 1,
				HashFunctions.fastCeil( ( desiredCapacity + size() ) / _loadFactor ) + 1 ) ) );
            computeMaxSize( capacity() );
        }
    }


    /**
     * Compresses the hashtable to the minimum prime size (as defined
     * by PrimeFinder) that will hold all of the elements currently in
     * the table.  If you have done a lot of remove
     * operations and plan to do a lot of queries or insertions or
     * iteration, it is a good idea to invoke this method.  Doing so
     * will accomplish two things:
     * 

*

    *
  1. You'll free memory allocated to the table but no * longer needed because of the remove()s.
  2. *

    *

  3. You'll get better query/insert/iterator performance * because there won't be any REMOVED slots to skip * over when probing for indices in the table.
  4. *
*/ public void compact() { // need at least one free spot for open addressing rehash( PrimeFinder.nextPrime( Math.max( _size + 1, HashFunctions.fastCeil( size() / _loadFactor ) + 1 ) ) ); computeMaxSize( capacity() ); // If auto-compaction is enabled, re-determine the compaction interval if ( _autoCompactionFactor != 0 ) { computeNextAutoCompactionAmount( size() ); } } /** * The auto-compaction factor controls whether and when a table performs a * {@link #compact} automatically after a certain number of remove operations. * If the value is non-zero, the number of removes that need to occur for * auto-compaction is the size of table at the time of the previous compaction * (or the initial capacity) multiplied by this factor. *

* Setting this value to zero will disable auto-compaction. * * @param factor a float that indicates the auto-compaction factor */ public void setAutoCompactionFactor( float factor ) { if ( factor < 0 ) { throw new IllegalArgumentException( "Factor must be >= 0: " + factor ); } _autoCompactionFactor = factor; } /** * @see #setAutoCompactionFactor * * @return a <float that represents the auto-compaction factor. */ public float getAutoCompactionFactor() { return _autoCompactionFactor; } /** * This simply calls {@link #compact compact}. It is included for * symmetry with other collection classes. Note that the name of this * method is somewhat misleading (which is why we prefer * compact) as the load factor may require capacity above * and beyond the size of this collection. * * @see #compact */ public final void trimToSize() { compact(); } /** * Delete the record at index. Reduces the size of the * collection by one. * * @param index an int value */ protected void removeAt( int index ) { _size--; // If auto-compaction is enabled, see if we need to compact if ( _autoCompactionFactor != 0 ) { _autoCompactRemovesRemaining--; if ( !_autoCompactTemporaryDisable && _autoCompactRemovesRemaining <= 0 ) { // Do the compact // NOTE: this will cause the next compaction interval to be calculated compact(); } } } /** Empties the collection. */ public void clear() { _size = 0; _free = capacity(); } /** * initializes the hashtable to a prime capacity which is at least * initialCapacity + 1. * * @param initialCapacity an int value * @return the actual capacity chosen */ protected int setUp( int initialCapacity ) { int capacity; capacity = PrimeFinder.nextPrime( initialCapacity ); computeMaxSize( capacity ); computeNextAutoCompactionAmount( initialCapacity ); return capacity; } /** * Rehashes the set. * * @param newCapacity an int value */ protected abstract void rehash( int newCapacity ); /** * Temporarily disables auto-compaction. MUST be followed by calling * {@link #reenableAutoCompaction}. */ public void tempDisableAutoCompaction() { _autoCompactTemporaryDisable = true; } /** * Re-enable auto-compaction after it was disabled via * {@link #tempDisableAutoCompaction()}. * * @param check_for_compaction True if compaction should be performed if needed * before returning. If false, no compaction will be * performed. */ public void reenableAutoCompaction( boolean check_for_compaction ) { _autoCompactTemporaryDisable = false; if ( check_for_compaction && _autoCompactRemovesRemaining <= 0 && _autoCompactionFactor != 0 ) { // Do the compact // NOTE: this will cause the next compaction interval to be calculated compact(); } } /** * Computes the values of maxSize. There will always be at least * one free slot required. * * @param capacity an int value */ protected void computeMaxSize( int capacity ) { // need at least one free slot for open addressing _maxSize = Math.min( capacity - 1, (int) ( capacity * _loadFactor ) ); _free = capacity - _size; // reset the free element count } /** * Computes the number of removes that need to happen before the next auto-compaction * will occur. * * @param size an int that sets the auto-compaction limit. */ protected void computeNextAutoCompactionAmount( int size ) { if ( _autoCompactionFactor != 0 ) { // NOTE: doing the round ourselves has been found to be faster than using // Math.round. _autoCompactRemovesRemaining = (int) ( ( size * _autoCompactionFactor ) + 0.5f ); } } /** * After an insert, this hook is called to adjust the size/free * values of the set and to perform rehashing if necessary. * * @param usedFreeSlot the slot */ protected final void postInsertHook( boolean usedFreeSlot ) { if ( usedFreeSlot ) { _free--; } // rehash whenever we exhaust the available space in the table if ( ++_size > _maxSize || _free == 0 ) { // choose a new capacity suited to the new state of the table // if we've grown beyond our maximum size, double capacity; // if we've exhausted the free spots, rehash to the same capacity, // which will free up any stale removed slots for reuse. int newCapacity = _size > _maxSize ? PrimeFinder.nextPrime( capacity() << 1 ) : capacity(); rehash( newCapacity ); computeMaxSize( capacity() ); } } protected int calculateGrownCapacity() { return capacity() << 1; } public void writeExternal( ObjectOutput out ) throws IOException { // VERSION out.writeByte( 0 ); // LOAD FACTOR out.writeFloat( _loadFactor ); // AUTO COMPACTION LOAD FACTOR out.writeFloat( _autoCompactionFactor ); } public void readExternal( ObjectInput in ) throws IOException, ClassNotFoundException { // VERSION in.readByte(); // LOAD FACTOR float old_factor = _loadFactor; _loadFactor = in.readFloat(); // AUTO COMPACTION LOAD FACTOR _autoCompactionFactor = in.readFloat(); // If we change the laod factor from the default, re-setup if ( old_factor != _loadFactor ) { setUp( (int) Math.ceil( DEFAULT_CAPACITY / _loadFactor ) ); } } }// THash