All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.monte.media.math.IntMath Maven / Gradle / Ivy

There is a newer version: 1.1
Show newest version
/*
 * @(#)IntMath.java  
 *
 * Copyright (c) 2002-2012 Werner Randelshofer, Goldau, Switzerland.
 * All rights reserved.
 *
 * You may not use, copy or modify this file, except in compliance with the
 * license agreement you entered into with Werner Randelshofer.
 * For details see accompanying license terms. 
 */

package org.monte.media.math;

import java.math.BigInteger;

/**
 * Utility class for integer arithmetic.
 * 
 * @author Werner Randelshofer
 * @version $Id: IntMath.java 299 2013-01-03 07:40:18Z werner $
 */
public class IntMath {
    
    /** Creates a new instance of IntMath */
    public IntMath() {
    }

    /**
     * Returns an int whose value is the greatest common divisor of
     * abs(a) and abs(b).  Returns 0 if
     * a==0 && b==0.
     *
     * @param  a value with with the GCD is to be computed.
     * @param  b value with with the GCD is to be computed.
     * @return GCD(a, b)
     */
    public static int gcd(int a, int b) {
        // Quelle:
        //   Herrmann, D. (1992). Algorithmen Arbeitsbuch. 
        //   Bonn, München Paris: Addison Wesley.
        //   ggt6, Seite 63
        
        a = Math.abs(a);
        b = Math.abs(b);
        
        while (a > 0 && b > 0) {
            a = a % b;
            if (a > 0) b = b % a;
        }
        return a + b;
    }
    /**
     * Returns a long whose value is the greatest common divisor of
     * abs(a) and abs(b).  Returns 0 if
     * a==0 && b==0.
     *
     * @param  a value with with the GCD is to be computed.
     * @param  b value with with the GCD is to be computed.
     * @return GCD(a, b)
     */
    public static long gcd(long a, long b) {
        // Quelle:
        //   Herrmann, D. (1992). Algorithmen Arbeitsbuch.
        //   Bonn, München Paris: Addison Wesley.
        //   ggt6, Seite 63

        a = Math.abs(a);
        b = Math.abs(b);

        while (a > 0 && b > 0) {
            a = a % b;
            if (a > 0) b = b % a;
        }
        return a + b;
    }
    /**
     * Returns a long whose value is the greatest common divisor of
     * abs(a) and abs(b).  Returns 0 if
     * a==0 && b==0.
     *
     * @param  a value with with the GCD is to be computed.
     * @param  b value with with the GCD is to be computed.
     * @return GCD(a, b)
     */
    public static BigInteger gcd(BigInteger a, BigInteger b) {
        // Quelle:
        //   Herrmann, D. (1992). Algorithmen Arbeitsbuch.
        //   Bonn, München Paris: Addison Wesley.
        //   ggt6, Seite 63

        a = a.abs();
        b = b.abs();

        while (a.compareTo(BigInteger.ZERO) > 0 && b.compareTo(BigInteger.ZERO) > 0) {
            a = a.mod(b);
            if (a.compareTo(BigInteger.ZERO) > 0) b = b.mod(a);
        }
        return a.add(b);
    }
    
    /**
     * Returns an int whose value is the smallest common multiple of
     * abs(a) and abs(b).  Returns 0 if
     * a==0 || b==0.
     *
     * @param  a value with with the SCM is to be computed.
     * @param  b value with with the SCM is to be computed.
     * @return SCM(a, b)
     */
    public static int scm(int a, int b) {
        // Quelle:
        //   Herrmann, D. (1992). Algorithmen Arbeitsbuch. 
        //   Bonn, München Paris: Addison Wesley.
        //   gill, Seite 141

        if (a == 0 || b == 0) return 0;
                
        a = Math.abs(a);
        b = Math.abs(b);

        int u = a;
        int v = b;
        
        while (a != b) {
            if (a < b) {
                b -= a;
                v += u;
            } else {
                a -= b;
                u += v;
            }
        }
        
        
        //return a; // gcd
        return (u + v) / 2; // scm
    }
    /**
     * Returns an int whose value is the smallest common multiple of
     * abs(a) and abs(b).  Returns 0 if
     * a==0 || b==0.
     *
     * @param  a value with with the SCM is to be computed.
     * @param  b value with with the SCM is to be computed.
     * @return SCM(a, b)
     */
    public static long scm(long a, long b) {
        // Quelle:
        //   Herrmann, D. (1992). Algorithmen Arbeitsbuch. 
        //   Bonn, München Paris: Addison Wesley.
        //   gill, Seite 141

        if (a == 0 || b == 0) return 0;
                
        a = Math.abs(a);
        b = Math.abs(b);
        if (b==1)return a;
        if (a==1)return b;

        long u = a;
        long v = b;
        
        // FIXME - Handle overflow
        while (a != b) {
            if (a < b) {
                b -= a;
                v += u;
            } else {
                a -= b;
                u += v;
            }
        }
        
        
        //return a; // gcd
        return (u + v) / 2; // scm
    }
    /**
     * Returns an int whose value is the smallest common multiple of
     * abs(a) and abs(b).  Returns 0 if
     * a==0 || b==0.
     *
     * @param  a value with with the SCM is to be computed.
     * @param  b value with with the SCM is to be computed.
     * @return SCM(a, b)
     */
    public static BigInteger scm(BigInteger a, BigInteger b) {
        // Quelle:
        //   Herrmann, D. (1992). Algorithmen Arbeitsbuch. 
        //   Bonn, München Paris: Addison Wesley.
        //   gill, Seite 141

        if (a.compareTo(BigInteger.ZERO) == 0 || b.compareTo(BigInteger.ZERO) == 0) {
            return BigInteger.ZERO;
        }
                
        a = a.abs();
        b = b.abs();
        if (b.compareTo(BigInteger.ONE)==0)return a;
        if (a.compareTo(BigInteger.ONE)==0)return b;

        BigInteger u = a;
        BigInteger v = b;
        
        // FIXME - Handle overflow
        while (a.compareTo(b) != 0) {
            if (a .compareTo( b)<0) {
                b = b.subtract(a);
                v = v.add(u);
            } else {
                a = a.subtract(b);
                u = u.add(v);
            }
        }
        
        
        //return a; // gcd
        return (u.add(v)).divide(BigInteger.valueOf(2)); // scm
    }
    
    /**
     * Reverses all 32 bits of the provided integer value.
     */
    public static int reverseBits(int a) {
        return reverseBits(a, 32);
    }
    /**
     * Reverses specified number of bits of the provided integer value.
     * @param a The number.
     * @param numBits The number of bits (must be between 1 and 32).
     */
    public static int reverseBits(int a, int numBits) {
        int b = 0;
        for (int i=0; i < numBits; i++) {
            b <<= 1;
            b |= (a & 1);
            a >>>= 1;
        }
        return b;
        
    }
    
    public static void main(String[] args) {
        for (int i=0; i < 8; i++) {
            int a = 1<




© 2015 - 2025 Weber Informatics LLC | Privacy Policy