com.powsybl.math.matrix.SparseMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of powsybl-math Show documentation
Show all versions of powsybl-math Show documentation
A set of mathematical utilities
/**
* Copyright (c) 2017, RTE (http://www.rte-france.com)
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
* SPDX-License-Identifier: MPL-2.0
*/
package com.powsybl.math.matrix;
import com.powsybl.commons.exceptions.UncheckedClassNotFoundException;
import com.powsybl.commons.util.trove.TDoubleArrayListHack;
import com.powsybl.commons.util.trove.TIntArrayListHack;
import java.io.*;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
/**
* Sparse matrix implementation in CSC format.
* This implementation rely on a native library which is a wrapper around KLU module of
* SuiteSparse project.
*
* @author Geoffroy Jamgotchian {@literal }
*/
public class SparseMatrix extends AbstractMatrix implements Serializable {
private static final long serialVersionUID = -7810324161942335828L;
/**
* Sparse Element implementation.
* An element in a sparse matrix is defined by its index in the values vector.
*/
class SparseElement implements Element {
/**
* Index of the element in the values vector.
*/
private final int valueIndex;
SparseElement(int valueIndex) {
this.valueIndex = valueIndex;
}
@Override
public void set(double value) {
values.setQuick(valueIndex, value);
}
@Override
public void add(double value) {
values.setQuick(valueIndex, values.getQuick(valueIndex) + value);
}
}
/**
* Row count.
*/
private final int rowCount;
/**
* Column count.
*/
private final int columnCount;
/**
* Column start index in {@link #values} array.
* Length of this vector is the number of column, plus one last element at the end for value count.
*/
private final int[] columnStart;
/**
* Column value count.
* Length of this vector is the number of column.
*/
private final int[] columnValueCount;
/**
* Row index for each of the {@link #values}.
* Length of this vector is the number of values.
*/
private final TIntArrayListHack rowIndices;
/**
* Non zero values.
*/
private final TDoubleArrayListHack values;
private double rgrowthThreshold = SparseLUDecomposition.DEFAULT_RGROWTH_THRESHOLD;
private int currentColumn = -1; // just for matrix filling
/**
* Create a sparse matrix from its internal structure vectors.
* This constructor is only called on C++ side.
*
* @param rowCount row count
* @param columnCount column count
* @param columnStart column start vector
* @param rowIndices row indices vector
* @param values value vector
*/
public SparseMatrix(int rowCount, int columnCount, int[] columnStart, int[] rowIndices, double[] values) {
checkSize(rowCount, columnCount);
this.rowCount = rowCount;
this.columnCount = columnCount;
this.columnStart = Objects.requireNonNull(columnStart);
if (columnStart.length != columnCount + 1) {
throw new MatrixException("columnStart array length has to be columnCount + 1");
}
columnValueCount = new int[columnCount];
this.rowIndices = new TIntArrayListHack(Objects.requireNonNull(rowIndices));
this.values = new TDoubleArrayListHack(Objects.requireNonNull(values));
if (rowIndices.length != values.length) {
throw new MatrixException("rowIndices and values arrays must have the same length");
}
fillColumnValueCount(this.columnCount, this.columnStart, columnValueCount, this.values);
currentColumn = columnCount - 1;
}
private static void fillColumnValueCount(int columnCount, int[] columnStart, int[] columnValueCount, TDoubleArrayListHack values) {
int lastNonEmptyColumn = -1;
for (int column = 0; column < columnCount; column++) {
if (columnStart[column] != -1) {
if (lastNonEmptyColumn != -1) {
columnValueCount[lastNonEmptyColumn] = columnStart[column] - columnStart[lastNonEmptyColumn];
}
lastNonEmptyColumn = column;
}
}
if (lastNonEmptyColumn != -1) {
columnValueCount[lastNonEmptyColumn] = values.size() - columnStart[lastNonEmptyColumn];
}
}
/**
* Create an empty sparse matrix.
*
* @param rowCount row count
* @param columnCount column count
* @param estimatedValueCount estimated number of values (used for internal pre-allocation)
*/
SparseMatrix(int rowCount, int columnCount, int estimatedValueCount) {
checkSize(rowCount, columnCount);
this.rowCount = rowCount;
this.columnCount = columnCount;
columnStart = new int[columnCount + 1];
columnValueCount = new int[columnCount];
Arrays.fill(columnStart, -1);
this.columnStart[columnCount] = 0;
rowIndices = new TIntArrayListHack(estimatedValueCount);
values = new TDoubleArrayListHack(estimatedValueCount);
}
private static void checkSize(int rowCount, int columnCount) {
if (rowCount < 1) {
throw new MatrixException("row count has to be strictly positive");
}
if (columnCount < 1) {
throw new MatrixException("column count has to be strictly positive");
}
}
public double getRgrowthThreshold() {
return rgrowthThreshold;
}
public void setRgrowthThreshold(double rgrowthThreshold) {
this.rgrowthThreshold = rgrowthThreshold;
}
/**
* Get columm start index vector.
*
* @return columm start index vector
*/
public int[] getColumnStart() {
return columnStart;
}
/**
* Get column value count vector.
*
* @return column value count vector.
*/
int[] getColumnValueCount() {
return columnValueCount;
}
/**
* Get row index vector.
*
* @return row index vector
*/
public int[] getRowIndices() {
return rowIndices.getData();
}
/**
* Get non zero value vector.
*
* @return non zero value vector
*/
public double[] getValues() {
return values.getData();
}
@Override
public int getRowCount() {
return rowCount;
}
@Override
public int getColumnCount() {
return columnCount;
}
/**
* {@inheritDoc}
*
*
* As sparse matrix is stored in CSC format. Columns must be filled in ascending order but values inside a column
* may be filled in any order.
*
* @throws MatrixException if values are filled in wrong order.
*/
@Override
public void set(int i, int j, double value) {
checkBounds(i, j);
if (j == currentColumn) {
// ok, continue to fill row
} else if (j > currentColumn) {
// start new column
for (int k = currentColumn + 1; k <= j; k++) {
columnStart[k] = values.size();
}
currentColumn = j;
} else {
throw new MatrixException("Columns have to be filled in the right order");
}
values.add(value);
rowIndices.add(i);
columnStart[columnStart.length - 1] = values.size();
columnValueCount[j]++;
}
private void fillLastEmptyColumns() {
for (int k = currentColumn + 1; k < columnCount; k++) {
columnStart[k] = values.size();
}
currentColumn = columnCount - 1;
}
/**
* {@inheritDoc}
*
*
* As sparse matrix is stored in CSC format. Columns must be filled in ascending order but values inside a column
* may be filled in any order.
*
* @throws MatrixException if values are filled in wrong order.
*/
@Override
public void add(int i, int j, double value) {
checkBounds(i, j);
boolean startNewColumn = false;
if (j == currentColumn) {
// ok, continue to fill row
} else if (j > currentColumn) {
// start new column
columnStart[j] = values.size();
currentColumn = j;
startNewColumn = true;
} else {
throw new MatrixException("Columns have to be filled in the right order");
}
if (!startNewColumn && i == rowIndices.get(rowIndices.size() - 1)) {
int vi = values.size() - 1;
values.setQuick(vi, values.getQuick(vi) + value);
} else {
values.add(value);
rowIndices.add(i);
columnStart[columnStart.length - 1] = values.size();
columnValueCount[j]++;
}
}
/**
* {@inheritDoc}
*
*
* As sparse matrix is stored in CSC format. Columns must be filled in ascending order but values inside a column
* may be filled in any order.
*
* @throws MatrixException if values are filled in wrong order.
*/
@Override
public Element addAndGetElement(int i, int j, double value) {
add(i, j, value);
return new SparseElement(values.size() - 1);
}
@Override
public int addAndGetIndex(int i, int j, double value) {
add(i, j, value);
return values.size() - 1;
}
private void checkElementIndex(int index) {
if (index < 0 || index >= values.size()) {
throw new MatrixException("Element index out of bound [0, " + (values.size() - 1) + "]");
}
}
@Override
public void setAtIndex(int index, double value) {
checkElementIndex(index);
setQuickAtIndex(index, value);
}
@Override
public void setQuickAtIndex(int index, double value) {
values.set(index, value);
}
@Override
public void addAtIndex(int index, double value) {
checkElementIndex(index);
addQuickAtIndex(index, value);
}
@Override
public void addQuickAtIndex(int index, double value) {
values.setQuick(index, values.getQuick(index) + value);
}
@Override
public void reset() {
values.fill(0d);
}
@Override
public LUDecomposition decomposeLU() {
fillLastEmptyColumns();
return new SparseLUDecomposition(this);
}
private native SparseMatrix times(int m1, int n1, int[] ap1, int[] ai1, double[] ax1, int m2, int n2, int[] ap2, int[] ai2, double[] ax2);
private native SparseMatrix add(int m1, int n1, int[] ap1, int[] ai1, double[] ax1, int m2, int n2, int[] ap2, int[] ai2, double[] ax2, double alpha, double beta);
public SparseMatrix times(SparseMatrix other) {
Objects.requireNonNull(other);
fillLastEmptyColumns();
other.fillLastEmptyColumns();
SparseMatrix result = times(rowCount, columnCount, columnStart, rowIndices.getData(), values.getData(),
other.rowCount, other.columnCount, other.columnStart, other.rowIndices.getData(), other.values.getData());
result.setRgrowthThreshold(rgrowthThreshold);
return result;
}
public SparseMatrix times(SparseMatrix other, double scalar) {
SparseMatrix result = times(other);
result.values.transformValues(v -> v * scalar);
return result;
}
@Override
public Matrix times(Matrix other, double scalar) {
SparseMatrix o = Objects.requireNonNull(other).toSparse();
return times(o, scalar);
}
public SparseMatrix add(SparseMatrix other, double alpha, double beta) {
Objects.requireNonNull(other);
fillLastEmptyColumns();
other.fillLastEmptyColumns();
SparseMatrix result = add(rowCount, columnCount, columnStart, rowIndices.getData(), values.getData(),
other.rowCount, other.columnCount, other.columnStart, other.rowIndices.getData(), other.values.getData(), alpha, beta);
result.setRgrowthThreshold(rgrowthThreshold);
return result;
}
@Override
public Matrix add(Matrix other, double alpha, double beta) {
SparseMatrix o = Objects.requireNonNull(other).toSparse();
return add(o, alpha, beta);
}
@Override
public void iterateNonZeroValue(ElementHandler handler) {
for (int j = 0; j < columnCount; j++) {
iterateNonZeroValueOfColumn(j, handler);
}
}
@Override
public void iterateNonZeroValueOfColumn(int j, ElementHandler handler) {
int first = columnStart[j];
if (first != -1) {
for (int v = first; v < first + columnValueCount[j]; v++) {
int i = rowIndices.getQuick(v);
double value = values.getQuick(v);
handler.onElement(i, j, value);
}
}
}
@Override
public DenseMatrix toDense() {
return (DenseMatrix) to(new DenseMatrixFactory());
}
@Override
public SparseMatrix toSparse() {
return this;
}
@Override
public Matrix to(MatrixFactory factory) {
Objects.requireNonNull(factory);
if (factory instanceof SparseMatrixFactory) {
return this;
}
return copy(factory);
}
@Override
public int getValueCount() {
return values.size();
}
private native SparseMatrix transpose(int m, int n, int[] ap, int[] ai, double[] ax);
@Override
public SparseMatrix transpose() {
fillLastEmptyColumns();
SparseMatrix transposed = transpose(rowCount, columnCount, columnStart, rowIndices.getData(), values.getData());
transposed.setRgrowthThreshold(rgrowthThreshold);
return transposed;
}
@Override
public void print(PrintStream out) {
print(out, null, null);
}
@Override
public void print(PrintStream out, List rowNames, List columnNames) {
out.println("rowCount=" + rowCount);
out.println("columnCount=" + columnCount);
out.println("columnStart=" + Arrays.toString(columnStart));
out.println("columnValueCount=" + Arrays.toString(columnValueCount));
out.println("rowIndices=" + rowIndices);
out.println("values=" + values);
}
@Override
public int hashCode() {
return rowCount + columnCount + Arrays.hashCode(columnStart) + Arrays.hashCode(columnValueCount) + rowIndices.hashCode() + values.hashCode();
}
@Override
public boolean equals(Object obj) {
if (obj instanceof SparseMatrix other) {
return rowCount == other.rowCount &&
columnCount == other.columnCount &&
Arrays.equals(columnStart, other.columnStart) &&
Arrays.equals(columnValueCount, other.columnValueCount) &&
rowIndices.equals(other.rowIndices) &&
values.equals(other.values);
}
return false;
}
public void write(OutputStream outputStream) {
Objects.requireNonNull(outputStream);
try (ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream)) {
objectOutputStream.writeObject(this);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public static SparseMatrix read(InputStream inputStream) {
Objects.requireNonNull(inputStream);
try (ObjectInputStream objectInputStream = new ObjectInputStream(inputStream)) {
return (SparseMatrix) objectInputStream.readObject();
} catch (IOException e) {
throw new UncheckedIOException(e);
} catch (ClassNotFoundException e) {
throw new UncheckedClassNotFoundException(e);
}
}
public void write(Path file) {
Objects.requireNonNull(file);
try (OutputStream outputStream = Files.newOutputStream(file)) {
write(outputStream);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public static SparseMatrix read(Path file) {
Objects.requireNonNull(file);
try (InputStream inputStream = Files.newInputStream(file)) {
return read(inputStream);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy