All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.powsybl.math.matrix.SparseMatrix Maven / Gradle / Ivy

There is a newer version: 6.6.0
Show newest version
/**
 * Copyright (c) 2017, RTE (http://www.rte-france.com)
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 * SPDX-License-Identifier: MPL-2.0
 */
package com.powsybl.math.matrix;

import com.powsybl.commons.exceptions.UncheckedClassNotFoundException;
import com.powsybl.commons.util.trove.TDoubleArrayListHack;
import com.powsybl.commons.util.trove.TIntArrayListHack;

import java.io.*;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

/**
 * Sparse matrix implementation in CSC format.
 * This implementation rely on a native library which is a wrapper around KLU module of
 * SuiteSparse project.
 *
 * @author Geoffroy Jamgotchian {@literal }
 */
public class SparseMatrix extends AbstractMatrix implements Serializable {

    private static final long serialVersionUID = -7810324161942335828L;

    /**
     * Sparse Element implementation.
     * An element in a sparse matrix is defined by its index in the values vector.
     */
    class SparseElement implements Element {

        /**
         * Index of the element in the values vector.
         */
        private final int valueIndex;

        SparseElement(int valueIndex) {
            this.valueIndex = valueIndex;
        }

        @Override
        public void set(double value) {
            values.setQuick(valueIndex, value);
        }

        @Override
        public void add(double value) {
            values.setQuick(valueIndex, values.getQuick(valueIndex) + value);
        }
    }

    /**
     * Row count.
     */
    private final int rowCount;

    /**
     * Column count.
     */
    private final int columnCount;

    /**
     * Column start index in {@link #values} array.
     * Length of this vector is the number of column, plus one last element at the end for value count.
     */
    private final int[] columnStart;

    /**
     * Column value count.
     * Length of this vector is the number of column.
     */
    private final int[] columnValueCount;

    /**
     * Row index for each of the {@link #values}.
     * Length of this vector is the number of values.
     */
    private final TIntArrayListHack rowIndices;

    /**
     * Non zero values.
     */
    private final TDoubleArrayListHack values;

    private double rgrowthThreshold = SparseLUDecomposition.DEFAULT_RGROWTH_THRESHOLD;

    private int currentColumn = -1; // just for matrix filling

    /**
     * Create a sparse matrix from its internal structure vectors.
     * This constructor is only called on C++ side.
     *
     * @param rowCount row count
     * @param columnCount column count
     * @param columnStart column start vector
     * @param rowIndices row indices vector
     * @param values value vector
     */
    public SparseMatrix(int rowCount, int columnCount, int[] columnStart, int[] rowIndices, double[] values) {
        checkSize(rowCount, columnCount);
        this.rowCount = rowCount;
        this.columnCount = columnCount;
        this.columnStart = Objects.requireNonNull(columnStart);
        if (columnStart.length != columnCount + 1) {
            throw new MatrixException("columnStart array length has to be columnCount + 1");
        }
        columnValueCount = new int[columnCount];
        this.rowIndices = new TIntArrayListHack(Objects.requireNonNull(rowIndices));
        this.values = new TDoubleArrayListHack(Objects.requireNonNull(values));
        if (rowIndices.length != values.length) {
            throw new MatrixException("rowIndices and values arrays must have the same length");
        }
        fillColumnValueCount(this.columnCount, this.columnStart, columnValueCount, this.values);
        currentColumn = columnCount - 1;
    }

    private static void fillColumnValueCount(int columnCount, int[] columnStart, int[] columnValueCount, TDoubleArrayListHack values) {
        int lastNonEmptyColumn = -1;
        for (int column = 0; column < columnCount; column++) {
            if (columnStart[column] != -1) {
                if (lastNonEmptyColumn != -1) {
                    columnValueCount[lastNonEmptyColumn] = columnStart[column] - columnStart[lastNonEmptyColumn];
                }
                lastNonEmptyColumn = column;
            }
        }
        if (lastNonEmptyColumn != -1) {
            columnValueCount[lastNonEmptyColumn] = values.size() - columnStart[lastNonEmptyColumn];
        }
    }

    /**
     * Create an empty sparse matrix.
     *
     * @param rowCount row count
     * @param columnCount column count
     * @param estimatedValueCount estimated number of values (used for internal pre-allocation)
     */
    SparseMatrix(int rowCount, int columnCount, int estimatedValueCount) {
        checkSize(rowCount, columnCount);
        this.rowCount = rowCount;
        this.columnCount = columnCount;
        columnStart = new int[columnCount + 1];
        columnValueCount = new int[columnCount];
        Arrays.fill(columnStart, -1);
        this.columnStart[columnCount] = 0;
        rowIndices = new TIntArrayListHack(estimatedValueCount);
        values = new TDoubleArrayListHack(estimatedValueCount);
    }

    private static void checkSize(int rowCount, int columnCount) {
        if (rowCount < 1) {
            throw new MatrixException("row count has to be strictly positive");
        }
        if (columnCount < 1) {
            throw new MatrixException("column count has to be strictly positive");
        }
    }

    public double getRgrowthThreshold() {
        return rgrowthThreshold;
    }

    public void setRgrowthThreshold(double rgrowthThreshold) {
        this.rgrowthThreshold = rgrowthThreshold;
    }

    /**
     * Get columm start index vector.
     *
     * @return columm start index vector
     */
    public int[] getColumnStart() {
        return columnStart;
    }

    /**
     * Get column value count vector.
     *
     * @return column value count vector.
     */
    int[] getColumnValueCount() {
        return columnValueCount;
    }

    /**
     * Get row index vector.
     *
     * @return row index vector
     */
    public int[] getRowIndices() {
        return rowIndices.getData();
    }

    /**
     * Get non zero value vector.
     *
     * @return non zero value vector
     */
    public double[] getValues() {
        return values.getData();
    }

    @Override
    public int getRowCount() {
        return rowCount;
    }

    @Override
    public int getColumnCount() {
        return columnCount;
    }

    /**
     * {@inheritDoc}
     *
     * 

* As sparse matrix is stored in CSC format. Columns must be filled in ascending order but values inside a column * may be filled in any order. *

* @throws MatrixException if values are filled in wrong order. */ @Override public void set(int i, int j, double value) { checkBounds(i, j); if (j == currentColumn) { // ok, continue to fill row } else if (j > currentColumn) { // start new column for (int k = currentColumn + 1; k <= j; k++) { columnStart[k] = values.size(); } currentColumn = j; } else { throw new MatrixException("Columns have to be filled in the right order"); } values.add(value); rowIndices.add(i); columnStart[columnStart.length - 1] = values.size(); columnValueCount[j]++; } private void fillLastEmptyColumns() { for (int k = currentColumn + 1; k < columnCount; k++) { columnStart[k] = values.size(); } currentColumn = columnCount - 1; } /** * {@inheritDoc} * *

* As sparse matrix is stored in CSC format. Columns must be filled in ascending order but values inside a column * may be filled in any order. *

* @throws MatrixException if values are filled in wrong order. */ @Override public void add(int i, int j, double value) { checkBounds(i, j); boolean startNewColumn = false; if (j == currentColumn) { // ok, continue to fill row } else if (j > currentColumn) { // start new column columnStart[j] = values.size(); currentColumn = j; startNewColumn = true; } else { throw new MatrixException("Columns have to be filled in the right order"); } if (!startNewColumn && i == rowIndices.get(rowIndices.size() - 1)) { int vi = values.size() - 1; values.setQuick(vi, values.getQuick(vi) + value); } else { values.add(value); rowIndices.add(i); columnStart[columnStart.length - 1] = values.size(); columnValueCount[j]++; } } /** * {@inheritDoc} * *

* As sparse matrix is stored in CSC format. Columns must be filled in ascending order but values inside a column * may be filled in any order. *

* @throws MatrixException if values are filled in wrong order. */ @Override public Element addAndGetElement(int i, int j, double value) { add(i, j, value); return new SparseElement(values.size() - 1); } @Override public int addAndGetIndex(int i, int j, double value) { add(i, j, value); return values.size() - 1; } private void checkElementIndex(int index) { if (index < 0 || index >= values.size()) { throw new MatrixException("Element index out of bound [0, " + (values.size() - 1) + "]"); } } @Override public void setAtIndex(int index, double value) { checkElementIndex(index); setQuickAtIndex(index, value); } @Override public void setQuickAtIndex(int index, double value) { values.set(index, value); } @Override public void addAtIndex(int index, double value) { checkElementIndex(index); addQuickAtIndex(index, value); } @Override public void addQuickAtIndex(int index, double value) { values.setQuick(index, values.getQuick(index) + value); } @Override public void reset() { values.fill(0d); } @Override public LUDecomposition decomposeLU() { fillLastEmptyColumns(); return new SparseLUDecomposition(this); } private native SparseMatrix times(int m1, int n1, int[] ap1, int[] ai1, double[] ax1, int m2, int n2, int[] ap2, int[] ai2, double[] ax2); private native SparseMatrix add(int m1, int n1, int[] ap1, int[] ai1, double[] ax1, int m2, int n2, int[] ap2, int[] ai2, double[] ax2, double alpha, double beta); public SparseMatrix times(SparseMatrix other) { Objects.requireNonNull(other); fillLastEmptyColumns(); other.fillLastEmptyColumns(); SparseMatrix result = times(rowCount, columnCount, columnStart, rowIndices.getData(), values.getData(), other.rowCount, other.columnCount, other.columnStart, other.rowIndices.getData(), other.values.getData()); result.setRgrowthThreshold(rgrowthThreshold); return result; } public SparseMatrix times(SparseMatrix other, double scalar) { SparseMatrix result = times(other); result.values.transformValues(v -> v * scalar); return result; } @Override public Matrix times(Matrix other, double scalar) { SparseMatrix o = Objects.requireNonNull(other).toSparse(); return times(o, scalar); } public SparseMatrix add(SparseMatrix other, double alpha, double beta) { Objects.requireNonNull(other); fillLastEmptyColumns(); other.fillLastEmptyColumns(); SparseMatrix result = add(rowCount, columnCount, columnStart, rowIndices.getData(), values.getData(), other.rowCount, other.columnCount, other.columnStart, other.rowIndices.getData(), other.values.getData(), alpha, beta); result.setRgrowthThreshold(rgrowthThreshold); return result; } @Override public Matrix add(Matrix other, double alpha, double beta) { SparseMatrix o = Objects.requireNonNull(other).toSparse(); return add(o, alpha, beta); } @Override public void iterateNonZeroValue(ElementHandler handler) { for (int j = 0; j < columnCount; j++) { iterateNonZeroValueOfColumn(j, handler); } } @Override public void iterateNonZeroValueOfColumn(int j, ElementHandler handler) { int first = columnStart[j]; if (first != -1) { for (int v = first; v < first + columnValueCount[j]; v++) { int i = rowIndices.getQuick(v); double value = values.getQuick(v); handler.onElement(i, j, value); } } } @Override public DenseMatrix toDense() { return (DenseMatrix) to(new DenseMatrixFactory()); } @Override public SparseMatrix toSparse() { return this; } @Override public Matrix to(MatrixFactory factory) { Objects.requireNonNull(factory); if (factory instanceof SparseMatrixFactory) { return this; } return copy(factory); } @Override public int getValueCount() { return values.size(); } private native SparseMatrix transpose(int m, int n, int[] ap, int[] ai, double[] ax); @Override public SparseMatrix transpose() { fillLastEmptyColumns(); SparseMatrix transposed = transpose(rowCount, columnCount, columnStart, rowIndices.getData(), values.getData()); transposed.setRgrowthThreshold(rgrowthThreshold); return transposed; } @Override public void print(PrintStream out) { print(out, null, null); } @Override public void print(PrintStream out, List rowNames, List columnNames) { out.println("rowCount=" + rowCount); out.println("columnCount=" + columnCount); out.println("columnStart=" + Arrays.toString(columnStart)); out.println("columnValueCount=" + Arrays.toString(columnValueCount)); out.println("rowIndices=" + rowIndices); out.println("values=" + values); } @Override public int hashCode() { return rowCount + columnCount + Arrays.hashCode(columnStart) + Arrays.hashCode(columnValueCount) + rowIndices.hashCode() + values.hashCode(); } @Override public boolean equals(Object obj) { if (obj instanceof SparseMatrix other) { return rowCount == other.rowCount && columnCount == other.columnCount && Arrays.equals(columnStart, other.columnStart) && Arrays.equals(columnValueCount, other.columnValueCount) && rowIndices.equals(other.rowIndices) && values.equals(other.values); } return false; } public void write(OutputStream outputStream) { Objects.requireNonNull(outputStream); try (ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream)) { objectOutputStream.writeObject(this); } catch (IOException e) { throw new UncheckedIOException(e); } } public static SparseMatrix read(InputStream inputStream) { Objects.requireNonNull(inputStream); try (ObjectInputStream objectInputStream = new ObjectInputStream(inputStream)) { return (SparseMatrix) objectInputStream.readObject(); } catch (IOException e) { throw new UncheckedIOException(e); } catch (ClassNotFoundException e) { throw new UncheckedClassNotFoundException(e); } } public void write(Path file) { Objects.requireNonNull(file); try (OutputStream outputStream = Files.newOutputStream(file)) { write(outputStream); } catch (IOException e) { throw new UncheckedIOException(e); } } public static SparseMatrix read(Path file) { Objects.requireNonNull(file); try (InputStream inputStream = Files.newInputStream(file)) { return read(inputStream); } catch (IOException e) { throw new UncheckedIOException(e); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy