All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.pulumi.azurenative.machinelearningservices.outputs.RegressionResponse Maven / Gradle / Ivy

There is a newer version: 2.78.0
Show newest version
// *** WARNING: this file was generated by pulumi-java-gen. ***
// *** Do not edit by hand unless you're certain you know what you are doing! ***

package com.pulumi.azurenative.machinelearningservices.outputs;

import com.pulumi.azurenative.machinelearningservices.outputs.AutoNCrossValidationsResponse;
import com.pulumi.azurenative.machinelearningservices.outputs.CustomNCrossValidationsResponse;
import com.pulumi.azurenative.machinelearningservices.outputs.MLTableJobInputResponse;
import com.pulumi.azurenative.machinelearningservices.outputs.RegressionTrainingSettingsResponse;
import com.pulumi.azurenative.machinelearningservices.outputs.TableVerticalFeaturizationSettingsResponse;
import com.pulumi.azurenative.machinelearningservices.outputs.TableVerticalLimitSettingsResponse;
import com.pulumi.core.Either;
import com.pulumi.core.annotations.CustomType;
import com.pulumi.exceptions.MissingRequiredPropertyException;
import java.lang.Double;
import java.lang.String;
import java.util.List;
import java.util.Objects;
import java.util.Optional;
import javax.annotation.Nullable;

@CustomType
public final class RegressionResponse {
    /**
     * @return Columns to use for CVSplit data.
     * 
     */
    private @Nullable List cvSplitColumnNames;
    /**
     * @return Featurization inputs needed for AutoML job.
     * 
     */
    private @Nullable TableVerticalFeaturizationSettingsResponse featurizationSettings;
    /**
     * @return Execution constraints for AutoMLJob.
     * 
     */
    private @Nullable TableVerticalLimitSettingsResponse limitSettings;
    /**
     * @return Log verbosity for the job.
     * 
     */
    private @Nullable String logVerbosity;
    /**
     * @return Number of cross validation folds to be applied on training dataset
     * when validation dataset is not provided.
     * 
     */
    private @Nullable Either nCrossValidations;
    /**
     * @return Primary metric for regression task.
     * 
     */
    private @Nullable String primaryMetric;
    /**
     * @return Target column name: This is prediction values column.
     * Also known as label column name in context of classification tasks.
     * 
     */
    private @Nullable String targetColumnName;
    /**
     * @return AutoMLJob Task type.
     * Expected value is 'Regression'.
     * 
     */
    private String taskType;
    /**
     * @return Test data input.
     * 
     */
    private @Nullable MLTableJobInputResponse testData;
    /**
     * @return The fraction of test dataset that needs to be set aside for validation purpose.
     * Values between (0.0 , 1.0)
     * Applied when validation dataset is not provided.
     * 
     */
    private @Nullable Double testDataSize;
    /**
     * @return [Required] Training data input.
     * 
     */
    private MLTableJobInputResponse trainingData;
    /**
     * @return Inputs for training phase for an AutoML Job.
     * 
     */
    private @Nullable RegressionTrainingSettingsResponse trainingSettings;
    /**
     * @return Validation data inputs.
     * 
     */
    private @Nullable MLTableJobInputResponse validationData;
    /**
     * @return The fraction of training dataset that needs to be set aside for validation purpose.
     * Values between (0.0 , 1.0)
     * Applied when validation dataset is not provided.
     * 
     */
    private @Nullable Double validationDataSize;
    /**
     * @return The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down.
     * 
     */
    private @Nullable String weightColumnName;

    private RegressionResponse() {}
    /**
     * @return Columns to use for CVSplit data.
     * 
     */
    public List cvSplitColumnNames() {
        return this.cvSplitColumnNames == null ? List.of() : this.cvSplitColumnNames;
    }
    /**
     * @return Featurization inputs needed for AutoML job.
     * 
     */
    public Optional featurizationSettings() {
        return Optional.ofNullable(this.featurizationSettings);
    }
    /**
     * @return Execution constraints for AutoMLJob.
     * 
     */
    public Optional limitSettings() {
        return Optional.ofNullable(this.limitSettings);
    }
    /**
     * @return Log verbosity for the job.
     * 
     */
    public Optional logVerbosity() {
        return Optional.ofNullable(this.logVerbosity);
    }
    /**
     * @return Number of cross validation folds to be applied on training dataset
     * when validation dataset is not provided.
     * 
     */
    public Optional> nCrossValidations() {
        return Optional.ofNullable(this.nCrossValidations);
    }
    /**
     * @return Primary metric for regression task.
     * 
     */
    public Optional primaryMetric() {
        return Optional.ofNullable(this.primaryMetric);
    }
    /**
     * @return Target column name: This is prediction values column.
     * Also known as label column name in context of classification tasks.
     * 
     */
    public Optional targetColumnName() {
        return Optional.ofNullable(this.targetColumnName);
    }
    /**
     * @return AutoMLJob Task type.
     * Expected value is 'Regression'.
     * 
     */
    public String taskType() {
        return this.taskType;
    }
    /**
     * @return Test data input.
     * 
     */
    public Optional testData() {
        return Optional.ofNullable(this.testData);
    }
    /**
     * @return The fraction of test dataset that needs to be set aside for validation purpose.
     * Values between (0.0 , 1.0)
     * Applied when validation dataset is not provided.
     * 
     */
    public Optional testDataSize() {
        return Optional.ofNullable(this.testDataSize);
    }
    /**
     * @return [Required] Training data input.
     * 
     */
    public MLTableJobInputResponse trainingData() {
        return this.trainingData;
    }
    /**
     * @return Inputs for training phase for an AutoML Job.
     * 
     */
    public Optional trainingSettings() {
        return Optional.ofNullable(this.trainingSettings);
    }
    /**
     * @return Validation data inputs.
     * 
     */
    public Optional validationData() {
        return Optional.ofNullable(this.validationData);
    }
    /**
     * @return The fraction of training dataset that needs to be set aside for validation purpose.
     * Values between (0.0 , 1.0)
     * Applied when validation dataset is not provided.
     * 
     */
    public Optional validationDataSize() {
        return Optional.ofNullable(this.validationDataSize);
    }
    /**
     * @return The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down.
     * 
     */
    public Optional weightColumnName() {
        return Optional.ofNullable(this.weightColumnName);
    }

    public static Builder builder() {
        return new Builder();
    }

    public static Builder builder(RegressionResponse defaults) {
        return new Builder(defaults);
    }
    @CustomType.Builder
    public static final class Builder {
        private @Nullable List cvSplitColumnNames;
        private @Nullable TableVerticalFeaturizationSettingsResponse featurizationSettings;
        private @Nullable TableVerticalLimitSettingsResponse limitSettings;
        private @Nullable String logVerbosity;
        private @Nullable Either nCrossValidations;
        private @Nullable String primaryMetric;
        private @Nullable String targetColumnName;
        private String taskType;
        private @Nullable MLTableJobInputResponse testData;
        private @Nullable Double testDataSize;
        private MLTableJobInputResponse trainingData;
        private @Nullable RegressionTrainingSettingsResponse trainingSettings;
        private @Nullable MLTableJobInputResponse validationData;
        private @Nullable Double validationDataSize;
        private @Nullable String weightColumnName;
        public Builder() {}
        public Builder(RegressionResponse defaults) {
    	      Objects.requireNonNull(defaults);
    	      this.cvSplitColumnNames = defaults.cvSplitColumnNames;
    	      this.featurizationSettings = defaults.featurizationSettings;
    	      this.limitSettings = defaults.limitSettings;
    	      this.logVerbosity = defaults.logVerbosity;
    	      this.nCrossValidations = defaults.nCrossValidations;
    	      this.primaryMetric = defaults.primaryMetric;
    	      this.targetColumnName = defaults.targetColumnName;
    	      this.taskType = defaults.taskType;
    	      this.testData = defaults.testData;
    	      this.testDataSize = defaults.testDataSize;
    	      this.trainingData = defaults.trainingData;
    	      this.trainingSettings = defaults.trainingSettings;
    	      this.validationData = defaults.validationData;
    	      this.validationDataSize = defaults.validationDataSize;
    	      this.weightColumnName = defaults.weightColumnName;
        }

        @CustomType.Setter
        public Builder cvSplitColumnNames(@Nullable List cvSplitColumnNames) {

            this.cvSplitColumnNames = cvSplitColumnNames;
            return this;
        }
        public Builder cvSplitColumnNames(String... cvSplitColumnNames) {
            return cvSplitColumnNames(List.of(cvSplitColumnNames));
        }
        @CustomType.Setter
        public Builder featurizationSettings(@Nullable TableVerticalFeaturizationSettingsResponse featurizationSettings) {

            this.featurizationSettings = featurizationSettings;
            return this;
        }
        @CustomType.Setter
        public Builder limitSettings(@Nullable TableVerticalLimitSettingsResponse limitSettings) {

            this.limitSettings = limitSettings;
            return this;
        }
        @CustomType.Setter
        public Builder logVerbosity(@Nullable String logVerbosity) {

            this.logVerbosity = logVerbosity;
            return this;
        }
        @CustomType.Setter
        public Builder nCrossValidations(@Nullable Either nCrossValidations) {

            this.nCrossValidations = nCrossValidations;
            return this;
        }
        @CustomType.Setter
        public Builder primaryMetric(@Nullable String primaryMetric) {

            this.primaryMetric = primaryMetric;
            return this;
        }
        @CustomType.Setter
        public Builder targetColumnName(@Nullable String targetColumnName) {

            this.targetColumnName = targetColumnName;
            return this;
        }
        @CustomType.Setter
        public Builder taskType(String taskType) {
            if (taskType == null) {
              throw new MissingRequiredPropertyException("RegressionResponse", "taskType");
            }
            this.taskType = taskType;
            return this;
        }
        @CustomType.Setter
        public Builder testData(@Nullable MLTableJobInputResponse testData) {

            this.testData = testData;
            return this;
        }
        @CustomType.Setter
        public Builder testDataSize(@Nullable Double testDataSize) {

            this.testDataSize = testDataSize;
            return this;
        }
        @CustomType.Setter
        public Builder trainingData(MLTableJobInputResponse trainingData) {
            if (trainingData == null) {
              throw new MissingRequiredPropertyException("RegressionResponse", "trainingData");
            }
            this.trainingData = trainingData;
            return this;
        }
        @CustomType.Setter
        public Builder trainingSettings(@Nullable RegressionTrainingSettingsResponse trainingSettings) {

            this.trainingSettings = trainingSettings;
            return this;
        }
        @CustomType.Setter
        public Builder validationData(@Nullable MLTableJobInputResponse validationData) {

            this.validationData = validationData;
            return this;
        }
        @CustomType.Setter
        public Builder validationDataSize(@Nullable Double validationDataSize) {

            this.validationDataSize = validationDataSize;
            return this;
        }
        @CustomType.Setter
        public Builder weightColumnName(@Nullable String weightColumnName) {

            this.weightColumnName = weightColumnName;
            return this;
        }
        public RegressionResponse build() {
            final var _resultValue = new RegressionResponse();
            _resultValue.cvSplitColumnNames = cvSplitColumnNames;
            _resultValue.featurizationSettings = featurizationSettings;
            _resultValue.limitSettings = limitSettings;
            _resultValue.logVerbosity = logVerbosity;
            _resultValue.nCrossValidations = nCrossValidations;
            _resultValue.primaryMetric = primaryMetric;
            _resultValue.targetColumnName = targetColumnName;
            _resultValue.taskType = taskType;
            _resultValue.testData = testData;
            _resultValue.testDataSize = testDataSize;
            _resultValue.trainingData = trainingData;
            _resultValue.trainingSettings = trainingSettings;
            _resultValue.validationData = validationData;
            _resultValue.validationDataSize = validationDataSize;
            _resultValue.weightColumnName = weightColumnName;
            return _resultValue;
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy