All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.pulumi.azurenative.machinelearningservices.inputs.TableVerticalFeaturizationSettingsArgs Maven / Gradle / Ivy

// *** WARNING: this file was generated by pulumi-java-gen. ***
// *** Do not edit by hand unless you're certain you know what you are doing! ***

package com.pulumi.azurenative.machinelearningservices.inputs;

import com.pulumi.azurenative.machinelearningservices.enums.BlockedTransformers;
import com.pulumi.azurenative.machinelearningservices.enums.FeaturizationMode;
import com.pulumi.azurenative.machinelearningservices.inputs.ColumnTransformerArgs;
import com.pulumi.core.Either;
import com.pulumi.core.Output;
import com.pulumi.core.annotations.Import;
import com.pulumi.core.internal.Codegen;
import java.lang.Boolean;
import java.lang.String;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import javax.annotation.Nullable;


/**
 * Featurization Configuration.
 * 
 */
public final class TableVerticalFeaturizationSettingsArgs extends com.pulumi.resources.ResourceArgs {

    public static final TableVerticalFeaturizationSettingsArgs Empty = new TableVerticalFeaturizationSettingsArgs();

    /**
     * These transformers shall not be used in featurization.
     * 
     */
    @Import(name="blockedTransformers")
    private @Nullable Output>> blockedTransformers;

    /**
     * @return These transformers shall not be used in featurization.
     * 
     */
    public Optional>>> blockedTransformers() {
        return Optional.ofNullable(this.blockedTransformers);
    }

    /**
     * Dictionary of column name and its type (int, float, string, datetime etc).
     * 
     */
    @Import(name="columnNameAndTypes")
    private @Nullable Output> columnNameAndTypes;

    /**
     * @return Dictionary of column name and its type (int, float, string, datetime etc).
     * 
     */
    public Optional>> columnNameAndTypes() {
        return Optional.ofNullable(this.columnNameAndTypes);
    }

    /**
     * Dataset language, useful for the text data.
     * 
     */
    @Import(name="datasetLanguage")
    private @Nullable Output datasetLanguage;

    /**
     * @return Dataset language, useful for the text data.
     * 
     */
    public Optional> datasetLanguage() {
        return Optional.ofNullable(this.datasetLanguage);
    }

    /**
     * Determines whether to use Dnn based featurizers for data featurization.
     * 
     */
    @Import(name="enableDnnFeaturization")
    private @Nullable Output enableDnnFeaturization;

    /**
     * @return Determines whether to use Dnn based featurizers for data featurization.
     * 
     */
    public Optional> enableDnnFeaturization() {
        return Optional.ofNullable(this.enableDnnFeaturization);
    }

    /**
     * Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
     * If 'Off' is selected then no featurization is done.
     * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
     * 
     */
    @Import(name="mode")
    private @Nullable Output> mode;

    /**
     * @return Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
     * If 'Off' is selected then no featurization is done.
     * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
     * 
     */
    public Optional>> mode() {
        return Optional.ofNullable(this.mode);
    }

    /**
     * User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
     * 
     */
    @Import(name="transformerParams")
    private @Nullable Output>> transformerParams;

    /**
     * @return User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
     * 
     */
    public Optional>>> transformerParams() {
        return Optional.ofNullable(this.transformerParams);
    }

    private TableVerticalFeaturizationSettingsArgs() {}

    private TableVerticalFeaturizationSettingsArgs(TableVerticalFeaturizationSettingsArgs $) {
        this.blockedTransformers = $.blockedTransformers;
        this.columnNameAndTypes = $.columnNameAndTypes;
        this.datasetLanguage = $.datasetLanguage;
        this.enableDnnFeaturization = $.enableDnnFeaturization;
        this.mode = $.mode;
        this.transformerParams = $.transformerParams;
    }

    public static Builder builder() {
        return new Builder();
    }
    public static Builder builder(TableVerticalFeaturizationSettingsArgs defaults) {
        return new Builder(defaults);
    }

    public static final class Builder {
        private TableVerticalFeaturizationSettingsArgs $;

        public Builder() {
            $ = new TableVerticalFeaturizationSettingsArgs();
        }

        public Builder(TableVerticalFeaturizationSettingsArgs defaults) {
            $ = new TableVerticalFeaturizationSettingsArgs(Objects.requireNonNull(defaults));
        }

        /**
         * @param blockedTransformers These transformers shall not be used in featurization.
         * 
         * @return builder
         * 
         */
        public Builder blockedTransformers(@Nullable Output>> blockedTransformers) {
            $.blockedTransformers = blockedTransformers;
            return this;
        }

        /**
         * @param blockedTransformers These transformers shall not be used in featurization.
         * 
         * @return builder
         * 
         */
        public Builder blockedTransformers(List> blockedTransformers) {
            return blockedTransformers(Output.of(blockedTransformers));
        }

        /**
         * @param blockedTransformers These transformers shall not be used in featurization.
         * 
         * @return builder
         * 
         */
        public Builder blockedTransformers(Either... blockedTransformers) {
            return blockedTransformers(List.of(blockedTransformers));
        }

        /**
         * @param columnNameAndTypes Dictionary of column name and its type (int, float, string, datetime etc).
         * 
         * @return builder
         * 
         */
        public Builder columnNameAndTypes(@Nullable Output> columnNameAndTypes) {
            $.columnNameAndTypes = columnNameAndTypes;
            return this;
        }

        /**
         * @param columnNameAndTypes Dictionary of column name and its type (int, float, string, datetime etc).
         * 
         * @return builder
         * 
         */
        public Builder columnNameAndTypes(Map columnNameAndTypes) {
            return columnNameAndTypes(Output.of(columnNameAndTypes));
        }

        /**
         * @param datasetLanguage Dataset language, useful for the text data.
         * 
         * @return builder
         * 
         */
        public Builder datasetLanguage(@Nullable Output datasetLanguage) {
            $.datasetLanguage = datasetLanguage;
            return this;
        }

        /**
         * @param datasetLanguage Dataset language, useful for the text data.
         * 
         * @return builder
         * 
         */
        public Builder datasetLanguage(String datasetLanguage) {
            return datasetLanguage(Output.of(datasetLanguage));
        }

        /**
         * @param enableDnnFeaturization Determines whether to use Dnn based featurizers for data featurization.
         * 
         * @return builder
         * 
         */
        public Builder enableDnnFeaturization(@Nullable Output enableDnnFeaturization) {
            $.enableDnnFeaturization = enableDnnFeaturization;
            return this;
        }

        /**
         * @param enableDnnFeaturization Determines whether to use Dnn based featurizers for data featurization.
         * 
         * @return builder
         * 
         */
        public Builder enableDnnFeaturization(Boolean enableDnnFeaturization) {
            return enableDnnFeaturization(Output.of(enableDnnFeaturization));
        }

        /**
         * @param mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
         * If 'Off' is selected then no featurization is done.
         * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
         * 
         * @return builder
         * 
         */
        public Builder mode(@Nullable Output> mode) {
            $.mode = mode;
            return this;
        }

        /**
         * @param mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
         * If 'Off' is selected then no featurization is done.
         * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
         * 
         * @return builder
         * 
         */
        public Builder mode(Either mode) {
            return mode(Output.of(mode));
        }

        /**
         * @param mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
         * If 'Off' is selected then no featurization is done.
         * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
         * 
         * @return builder
         * 
         */
        public Builder mode(String mode) {
            return mode(Either.ofLeft(mode));
        }

        /**
         * @param mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
         * If 'Off' is selected then no featurization is done.
         * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
         * 
         * @return builder
         * 
         */
        public Builder mode(FeaturizationMode mode) {
            return mode(Either.ofRight(mode));
        }

        /**
         * @param transformerParams User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
         * 
         * @return builder
         * 
         */
        public Builder transformerParams(@Nullable Output>> transformerParams) {
            $.transformerParams = transformerParams;
            return this;
        }

        /**
         * @param transformerParams User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
         * 
         * @return builder
         * 
         */
        public Builder transformerParams(Map> transformerParams) {
            return transformerParams(Output.of(transformerParams));
        }

        public TableVerticalFeaturizationSettingsArgs build() {
            $.enableDnnFeaturization = Codegen.booleanProp("enableDnnFeaturization").output().arg($.enableDnnFeaturization).def(false).getNullable();
            $.mode = Codegen.stringProp("mode").left(FeaturizationMode.class).output().arg($.mode).def("Auto").getNullable();
            return $;
        }
    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy