All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.pulumi.azurenative.machinelearningservices.outputs.TableVerticalFeaturizationSettingsResponse Maven / Gradle / Ivy

// *** WARNING: this file was generated by pulumi-java-gen. ***
// *** Do not edit by hand unless you're certain you know what you are doing! ***

package com.pulumi.azurenative.machinelearningservices.outputs;

import com.pulumi.azurenative.machinelearningservices.outputs.ColumnTransformerResponse;
import com.pulumi.core.annotations.CustomType;
import java.lang.Boolean;
import java.lang.String;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import javax.annotation.Nullable;

@CustomType
public final class TableVerticalFeaturizationSettingsResponse {
    /**
     * @return These transformers shall not be used in featurization.
     * 
     */
    private @Nullable List blockedTransformers;
    /**
     * @return Dictionary of column name and its type (int, float, string, datetime etc).
     * 
     */
    private @Nullable Map columnNameAndTypes;
    /**
     * @return Dataset language, useful for the text data.
     * 
     */
    private @Nullable String datasetLanguage;
    /**
     * @return Determines whether to use Dnn based featurizers for data featurization.
     * 
     */
    private @Nullable Boolean enableDnnFeaturization;
    /**
     * @return Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
     * If 'Off' is selected then no featurization is done.
     * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
     * 
     */
    private @Nullable String mode;
    /**
     * @return User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
     * 
     */
    private @Nullable Map> transformerParams;

    private TableVerticalFeaturizationSettingsResponse() {}
    /**
     * @return These transformers shall not be used in featurization.
     * 
     */
    public List blockedTransformers() {
        return this.blockedTransformers == null ? List.of() : this.blockedTransformers;
    }
    /**
     * @return Dictionary of column name and its type (int, float, string, datetime etc).
     * 
     */
    public Map columnNameAndTypes() {
        return this.columnNameAndTypes == null ? Map.of() : this.columnNameAndTypes;
    }
    /**
     * @return Dataset language, useful for the text data.
     * 
     */
    public Optional datasetLanguage() {
        return Optional.ofNullable(this.datasetLanguage);
    }
    /**
     * @return Determines whether to use Dnn based featurizers for data featurization.
     * 
     */
    public Optional enableDnnFeaturization() {
        return Optional.ofNullable(this.enableDnnFeaturization);
    }
    /**
     * @return Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
     * If 'Off' is selected then no featurization is done.
     * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
     * 
     */
    public Optional mode() {
        return Optional.ofNullable(this.mode);
    }
    /**
     * @return User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
     * 
     */
    public Map> transformerParams() {
        return this.transformerParams == null ? Map.of() : this.transformerParams;
    }

    public static Builder builder() {
        return new Builder();
    }

    public static Builder builder(TableVerticalFeaturizationSettingsResponse defaults) {
        return new Builder(defaults);
    }
    @CustomType.Builder
    public static final class Builder {
        private @Nullable List blockedTransformers;
        private @Nullable Map columnNameAndTypes;
        private @Nullable String datasetLanguage;
        private @Nullable Boolean enableDnnFeaturization;
        private @Nullable String mode;
        private @Nullable Map> transformerParams;
        public Builder() {}
        public Builder(TableVerticalFeaturizationSettingsResponse defaults) {
    	      Objects.requireNonNull(defaults);
    	      this.blockedTransformers = defaults.blockedTransformers;
    	      this.columnNameAndTypes = defaults.columnNameAndTypes;
    	      this.datasetLanguage = defaults.datasetLanguage;
    	      this.enableDnnFeaturization = defaults.enableDnnFeaturization;
    	      this.mode = defaults.mode;
    	      this.transformerParams = defaults.transformerParams;
        }

        @CustomType.Setter
        public Builder blockedTransformers(@Nullable List blockedTransformers) {

            this.blockedTransformers = blockedTransformers;
            return this;
        }
        public Builder blockedTransformers(String... blockedTransformers) {
            return blockedTransformers(List.of(blockedTransformers));
        }
        @CustomType.Setter
        public Builder columnNameAndTypes(@Nullable Map columnNameAndTypes) {

            this.columnNameAndTypes = columnNameAndTypes;
            return this;
        }
        @CustomType.Setter
        public Builder datasetLanguage(@Nullable String datasetLanguage) {

            this.datasetLanguage = datasetLanguage;
            return this;
        }
        @CustomType.Setter
        public Builder enableDnnFeaturization(@Nullable Boolean enableDnnFeaturization) {

            this.enableDnnFeaturization = enableDnnFeaturization;
            return this;
        }
        @CustomType.Setter
        public Builder mode(@Nullable String mode) {

            this.mode = mode;
            return this;
        }
        @CustomType.Setter
        public Builder transformerParams(@Nullable Map> transformerParams) {

            this.transformerParams = transformerParams;
            return this;
        }
        public TableVerticalFeaturizationSettingsResponse build() {
            final var _resultValue = new TableVerticalFeaturizationSettingsResponse();
            _resultValue.blockedTransformers = blockedTransformers;
            _resultValue.columnNameAndTypes = columnNameAndTypes;
            _resultValue.datasetLanguage = datasetLanguage;
            _resultValue.enableDnnFeaturization = enableDnnFeaturization;
            _resultValue.mode = mode;
            _resultValue.transformerParams = transformerParams;
            return _resultValue;
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy