
com.pulumi.azurenative.machinelearningservices.outputs.TableVerticalFeaturizationSettingsResponse Maven / Gradle / Ivy
// *** WARNING: this file was generated by pulumi-java-gen. ***
// *** Do not edit by hand unless you're certain you know what you are doing! ***
package com.pulumi.azurenative.machinelearningservices.outputs;
import com.pulumi.azurenative.machinelearningservices.outputs.ColumnTransformerResponse;
import com.pulumi.core.annotations.CustomType;
import java.lang.Boolean;
import java.lang.String;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import javax.annotation.Nullable;
@CustomType
public final class TableVerticalFeaturizationSettingsResponse {
/**
* @return These transformers shall not be used in featurization.
*
*/
private @Nullable List blockedTransformers;
/**
* @return Dictionary of column name and its type (int, float, string, datetime etc).
*
*/
private @Nullable Map columnNameAndTypes;
/**
* @return Dataset language, useful for the text data.
*
*/
private @Nullable String datasetLanguage;
/**
* @return Determines whether to use Dnn based featurizers for data featurization.
*
*/
private @Nullable Boolean enableDnnFeaturization;
/**
* @return Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
* If 'Off' is selected then no featurization is done.
* If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
*
*/
private @Nullable String mode;
/**
* @return User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
*
*/
private @Nullable Map> transformerParams;
private TableVerticalFeaturizationSettingsResponse() {}
/**
* @return These transformers shall not be used in featurization.
*
*/
public List blockedTransformers() {
return this.blockedTransformers == null ? List.of() : this.blockedTransformers;
}
/**
* @return Dictionary of column name and its type (int, float, string, datetime etc).
*
*/
public Map columnNameAndTypes() {
return this.columnNameAndTypes == null ? Map.of() : this.columnNameAndTypes;
}
/**
* @return Dataset language, useful for the text data.
*
*/
public Optional datasetLanguage() {
return Optional.ofNullable(this.datasetLanguage);
}
/**
* @return Determines whether to use Dnn based featurizers for data featurization.
*
*/
public Optional enableDnnFeaturization() {
return Optional.ofNullable(this.enableDnnFeaturization);
}
/**
* @return Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
* If 'Off' is selected then no featurization is done.
* If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
*
*/
public Optional mode() {
return Optional.ofNullable(this.mode);
}
/**
* @return User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
*
*/
public Map> transformerParams() {
return this.transformerParams == null ? Map.of() : this.transformerParams;
}
public static Builder builder() {
return new Builder();
}
public static Builder builder(TableVerticalFeaturizationSettingsResponse defaults) {
return new Builder(defaults);
}
@CustomType.Builder
public static final class Builder {
private @Nullable List blockedTransformers;
private @Nullable Map columnNameAndTypes;
private @Nullable String datasetLanguage;
private @Nullable Boolean enableDnnFeaturization;
private @Nullable String mode;
private @Nullable Map> transformerParams;
public Builder() {}
public Builder(TableVerticalFeaturizationSettingsResponse defaults) {
Objects.requireNonNull(defaults);
this.blockedTransformers = defaults.blockedTransformers;
this.columnNameAndTypes = defaults.columnNameAndTypes;
this.datasetLanguage = defaults.datasetLanguage;
this.enableDnnFeaturization = defaults.enableDnnFeaturization;
this.mode = defaults.mode;
this.transformerParams = defaults.transformerParams;
}
@CustomType.Setter
public Builder blockedTransformers(@Nullable List blockedTransformers) {
this.blockedTransformers = blockedTransformers;
return this;
}
public Builder blockedTransformers(String... blockedTransformers) {
return blockedTransformers(List.of(blockedTransformers));
}
@CustomType.Setter
public Builder columnNameAndTypes(@Nullable Map columnNameAndTypes) {
this.columnNameAndTypes = columnNameAndTypes;
return this;
}
@CustomType.Setter
public Builder datasetLanguage(@Nullable String datasetLanguage) {
this.datasetLanguage = datasetLanguage;
return this;
}
@CustomType.Setter
public Builder enableDnnFeaturization(@Nullable Boolean enableDnnFeaturization) {
this.enableDnnFeaturization = enableDnnFeaturization;
return this;
}
@CustomType.Setter
public Builder mode(@Nullable String mode) {
this.mode = mode;
return this;
}
@CustomType.Setter
public Builder transformerParams(@Nullable Map> transformerParams) {
this.transformerParams = transformerParams;
return this;
}
public TableVerticalFeaturizationSettingsResponse build() {
final var _resultValue = new TableVerticalFeaturizationSettingsResponse();
_resultValue.blockedTransformers = blockedTransformers;
_resultValue.columnNameAndTypes = columnNameAndTypes;
_resultValue.datasetLanguage = datasetLanguage;
_resultValue.enableDnnFeaturization = enableDnnFeaturization;
_resultValue.mode = mode;
_resultValue.transformerParams = transformerParams;
return _resultValue;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy