org.apache.flink.table.runtime.aggregate.DataSetSlideTimeWindowAggReduceGroupFunction.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of flink-table-planner_2.11 Show documentation
Show all versions of flink-table-planner_2.11 Show documentation
This module bridges Table/SQL API and runtime. It contains
all resources that are required during pre-flight and runtime
phase.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.table.runtime.aggregate
import java.lang.Iterable
import org.apache.flink.api.common.functions.{CombineFunction, RichGroupReduceFunction}
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.api.java.typeutils.ResultTypeQueryable
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.table.codegen.{Compiler, GeneratedAggregationsFunction}
import org.apache.flink.table.util.Logging
import org.apache.flink.types.Row
import org.apache.flink.util.Collector
/**
* It is used for sliding windows on batch for time-windows. It takes a prepared input row (with
* aligned rowtime for pre-tumbling), pre-aggregates (pre-tumbles) rows, aligns the window start,
* and replicates or omits records for different panes of a sliding window.
*
* This function is similar to [[DataSetTumbleCountWindowAggReduceGroupFunction]], however,
* it does no final aggregate evaluation. It also includes the logic of
* [[DataSetSlideTimeWindowAggFlatMapFunction]].
*
* @param genAggregations Code-generated [[GeneratedAggregations]]
* @param keysAndAggregatesArity The total arity of keys and aggregates
* @param windowSize window size of the sliding window
* @param windowSlide window slide of the sliding window
* @param returnType return type of this function
*/
class DataSetSlideTimeWindowAggReduceGroupFunction(
private val genAggregations: GeneratedAggregationsFunction,
private val keysAndAggregatesArity: Int,
private val windowSize: Long,
private val windowSlide: Long,
@transient private val returnType: TypeInformation[Row])
extends RichGroupReduceFunction[Row, Row]
with CombineFunction[Row, Row]
with ResultTypeQueryable[Row]
with Compiler[GeneratedAggregations]
with Logging {
private val timeFieldPos = returnType.getArity - 1
private val intermediateWindowStartPos = keysAndAggregatesArity
protected var intermediateRow: Row = _
private var accumulators: Row = _
private var function: GeneratedAggregations = _
override def open(config: Configuration) {
LOG.debug(s"Compiling AggregateHelper: $genAggregations.name \n\n " +
s"Code:\n$genAggregations.code")
val clazz = compile(
getRuntimeContext.getUserCodeClassLoader,
genAggregations.name,
genAggregations.code)
LOG.debug("Instantiating AggregateHelper.")
function = clazz.newInstance()
accumulators = function.createAccumulators()
intermediateRow = function.createOutputRow()
}
override def reduce(records: Iterable[Row], out: Collector[Row]): Unit = {
// reset first accumulator
function.resetAccumulator(accumulators)
val iterator = records.iterator()
var record: Row = null
while (iterator.hasNext) {
record = iterator.next()
// accumulate
function.mergeAccumulatorsPair(accumulators, record)
}
val windowStart = record.getField(timeFieldPos).asInstanceOf[Long]
// adopted from SlidingEventTimeWindows.assignWindows
var start: Long = TimeWindow.getWindowStartWithOffset(windowStart, 0, windowSlide)
// skip preparing output if it is not necessary
if (start > windowStart - windowSize) {
// set group keys and partial accumulated result
function.setAggregationResults(accumulators, intermediateRow)
function.setForwardedFields(record, intermediateRow)
// adopted from SlidingEventTimeWindows.assignWindows
while (start > windowStart - windowSize) {
intermediateRow.setField(intermediateWindowStartPos, start)
out.collect(intermediateRow)
start -= windowSlide
}
}
}
override def combine(records: Iterable[Row]): Row = {
// reset first accumulator
function.resetAccumulator(accumulators)
val iterator = records.iterator()
var record: Row = null
while (iterator.hasNext) {
record = iterator.next()
function.mergeAccumulatorsPair(accumulators, record)
}
// set group keys and partial accumulated result
function.setAggregationResults(accumulators, intermediateRow)
function.setForwardedFields(record, intermediateRow)
intermediateRow.setField(timeFieldPos, record.getField(timeFieldPos))
intermediateRow
}
override def getProducedType: TypeInformation[Row] = {
returnType
}
}