All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jboss.netty.handler.codec.replay.ReplayingDecoder Maven / Gradle / Ivy

There is a newer version: 3.3.0-4.1
Show newest version
/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package org.jboss.netty.handler.codec.replay;

import org.jboss.netty.buffer.ChannelBuffer;
import org.jboss.netty.channel.Channel;
import org.jboss.netty.channel.ChannelHandler;
import org.jboss.netty.channel.ChannelHandlerContext;
import org.jboss.netty.channel.ChannelPipeline;
import org.jboss.netty.channel.ChannelStateEvent;
import org.jboss.netty.channel.MessageEvent;
import org.jboss.netty.handler.codec.frame.FrameDecoder;

import java.net.SocketAddress;

/**
 * A specialized variation of {@link FrameDecoder} which enables implementation
 * of a non-blocking decoder in the blocking I/O paradigm.
 * 

* The biggest difference between {@link ReplayingDecoder} and * {@link FrameDecoder} is that {@link ReplayingDecoder} allows you to * implement the {@code decode()} and {@code decodeLast()} methods just like * all required bytes were received already, rather than checking the * availability of the required bytes. For example, the following * {@link FrameDecoder} implementation: *

 * public class IntegerHeaderFrameDecoder extends {@link FrameDecoder} {
 *
 *   {@code @Override}
 *   protected Object decode({@link ChannelHandlerContext} ctx,
 *                           {@link Channel} channel,
 *                           {@link ChannelBuffer} buf) throws Exception {
 *
 *     if (buf.readableBytes() < 4) {
 *        return null;
 *     }
 *
 *     buf.markReaderIndex();
 *     int length = buf.readInt();
 *
 *     if (buf.readableBytes() < length) {
 *        buf.resetReaderIndex();
 *        return null;
 *     }
 *
 *     return buf.readBytes(length);
 *   }
 * }
 * 
* is simplified like the following with {@link ReplayingDecoder}: *
 * public class IntegerHeaderFrameDecoder
 *      extends {@link ReplayingDecoder}<{@link VoidEnum}> {
 *
 *   protected Object decode({@link ChannelHandlerContext} ctx,
 *                           {@link Channel} channel,
 *                           {@link ChannelBuffer} buf,
 *                           {@link VoidEnum} state) throws Exception {
 *
 *     return buf.readBytes(buf.readInt());
 *   }
 * }
 * 
* *

How does this work?

*

* {@link ReplayingDecoder} passes a specialized {@link ChannelBuffer} * implementation which throws an {@link Error} of certain type when there's not * enough data in the buffer. In the {@code IntegerHeaderFrameDecoder} above, * you just assumed that there will be 4 or more bytes in the buffer when * you call {@code buf.readInt()}. If there's really 4 bytes in the buffer, * it will return the integer header as you expected. Otherwise, the * {@link Error} will be raised and the control will be returned to * {@link ReplayingDecoder}. If {@link ReplayingDecoder} catches the * {@link Error}, then it will rewind the {@code readerIndex} of the buffer * back to the 'initial' position (i.e. the beginning of the buffer) and call * the {@code decode(..)} method again when more data is received into the * buffer. *

* Please note that {@link ReplayingDecoder} always throws the same cached * {@link Error} instance to avoid the overhead of creating a new {@link Error} * and filling its stack trace for every throw. * *

Limitations

*

* At the cost of the simplicity, {@link ReplayingDecoder} enforces you a few * limitations: *

    *
  • Some buffer operations are prohibited.
  • *
  • Performance can be worse if the network is slow and the message * format is complicated unlike the example above. In this case, your * decoder might have to decode the same part of the message over and over * again.
  • *
  • You must keep in mind that {@code decode(..)} method can be called many * times to decode a single message. For example, the following code will * not work: *
     public class MyDecoder extends {@link ReplayingDecoder}<{@link VoidEnum}> {
     *
     *   private final Queue<Integer> values = new LinkedList<Integer>();
     *
     *   {@code @Override}
     *   public Object decode(.., {@link ChannelBuffer} buffer, ..) throws Exception {
     *
     *     // A message contains 2 integers.
     *     values.offer(buffer.readInt());
     *     values.offer(buffer.readInt());
     *
     *     // This assertion will fail intermittently since values.offer()
     *     // can be called more than two times!
     *     assert values.size() == 2;
     *     return values.poll() + values.poll();
     *   }
     * }
    * The correct implementation looks like the following, and you can also * utilize the 'checkpoint' feature which is explained in detail in the * next section. *
     public class MyDecoder extends {@link ReplayingDecoder}<{@link VoidEnum}> {
     *
     *   private final Queue<Integer> values = new LinkedList<Integer>();
     *
     *   {@code @Override}
     *   public Object decode(.., {@link ChannelBuffer} buffer, ..) throws Exception {
     *
     *     // Revert the state of the variable that might have been changed
     *     // since the last partial decode.
     *     values.clear();
     *
     *     // A message contains 2 integers.
     *     values.offer(buffer.readInt());
     *     values.offer(buffer.readInt());
     *
     *     // Now we know this assertion will never fail.
     *     assert values.size() == 2;
     *     return values.poll() + values.poll();
     *   }
     * }
    *
  • *
* *

Improving the performance

*

* Fortunately, the performance of a complex decoder implementation can be * improved significantly with the {@code checkpoint()} method. The * {@code checkpoint()} method updates the 'initial' position of the buffer so * that {@link ReplayingDecoder} rewinds the {@code readerIndex} of the buffer * to the last position where you called the {@code checkpoint()} method. * *

Calling {@code checkpoint(T)} with an {@link Enum}

*

* Although you can just use {@code checkpoint()} method and manage the state * of the decoder by yourself, the easiest way to manage the state of the * decoder is to create an {@link Enum} type which represents the current state * of the decoder and to call {@code checkpoint(T)} method whenever the state * changes. You can have as many states as you want depending on the * complexity of the message you want to decode: * *

 * public enum MyDecoderState {
 *   READ_LENGTH,
 *   READ_CONTENT;
 * }
 *
 * public class IntegerHeaderFrameDecoder
 *      extends {@link ReplayingDecoder}<MyDecoderState> {
 *
 *   private int length;
 *
 *   public IntegerHeaderFrameDecoder() {
 *     // Set the initial state.
 *     super(MyDecoderState.READ_LENGTH);
 *   }
 *
 *   {@code @Override}
 *   protected Object decode({@link ChannelHandlerContext} ctx,
 *                           {@link Channel} channel,
 *                           {@link ChannelBuffer} buf,
 *                           MyDecoderState state) throws Exception {
 *     switch (state) {
 *     case READ_LENGTH:
 *       length = buf.readInt();
 *       checkpoint(MyDecoderState.READ_CONTENT);
 *     case READ_CONTENT:
 *       ChannelBuffer frame = buf.readBytes(length);
 *       checkpoint(MyDecoderState.READ_LENGTH);
 *       return frame;
 *     default:
 *       throw new Error("Shouldn't reach here.");
 *     }
 *   }
 * }
 * 
* *

Calling {@code checkpoint()} with no parameter

*

* An alternative way to manage the decoder state is to manage it by yourself. *

 * public class IntegerHeaderFrameDecoder
 *      extends {@link ReplayingDecoder}<{@link VoidEnum}> {
 *
 *   private boolean readLength;
 *   private int length;
 *
 *   {@code @Override}
 *   protected Object decode({@link ChannelHandlerContext} ctx,
 *                           {@link Channel} channel,
 *                           {@link ChannelBuffer} buf,
 *                           {@link VoidEnum} state) throws Exception {
 *     if (!readLength) {
 *       length = buf.readInt();
 *       readLength = true;
 *       checkpoint();
 *     }
 *
 *     if (readLength) {
 *       ChannelBuffer frame = buf.readBytes(length);
 *       readLength = false;
 *       checkpoint();
 *       return frame;
 *     }
 *   }
 * }
 * 
* *

Replacing a decoder with another decoder in a pipeline

*

* If you are going to write a protocol multiplexer, you will probably want to * replace a {@link ReplayingDecoder} (protocol detector) with another * {@link ReplayingDecoder} or {@link FrameDecoder} (actual protocol decoder). * It is not possible to achieve this simply by calling * {@link ChannelPipeline#replace(ChannelHandler, String, ChannelHandler)}, but * some additional steps are required: *

 * public class FirstDecoder extends {@link ReplayingDecoder}<{@link VoidEnum}> {
 *
 *     public FirstDecoder() {
 *         super(true); // Enable unfold
 *     }
 *
 *     {@code @Override}
 *     protected Object decode({@link ChannelHandlerContext} ctx,
 *                             {@link Channel} ch,
 *                             {@link ChannelBuffer} buf,
 *                             {@link VoidEnum} state) {
 *         ...
 *         // Decode the first message
 *         Object firstMessage = ...;
 *
 *         // Add the second decoder
 *         ctx.getPipeline().addLast("second", new SecondDecoder());
 *
 *         // Remove the first decoder (me)
 *         ctx.getPipeline().remove(this);
 *
 *         if (buf.readable()) {
 *             // Hand off the remaining data to the second decoder
 *             return new Object[] { firstMessage, buf.readBytes(super.actualReadableBytes()) };
 *         } else {
 *             // Nothing to hand off
 *             return firstMessage;
 *         }
 *     }
 * 
* * @param * the state type; use {@link VoidEnum} if state management is unused * * @apiviz.landmark * @apiviz.has org.jboss.netty.handler.codec.replay.UnreplayableOperationException oneway - - throws */ public abstract class ReplayingDecoder> extends FrameDecoder { private final ReplayingDecoderBuffer replayable = new ReplayingDecoderBuffer(this); private T state; private int checkpoint; private boolean needsCleanup; /** * Creates a new instance with no initial state (i.e: {@code null}). */ protected ReplayingDecoder() { this(null); } protected ReplayingDecoder(boolean unfold) { this(null, unfold); } /** * Creates a new instance with the specified initial state. */ protected ReplayingDecoder(T initialState) { this(initialState, false); } protected ReplayingDecoder(T initialState, boolean unfold) { super(unfold); state = initialState; } @Override protected ChannelBuffer internalBuffer() { return super.internalBuffer(); } /** * Stores the internal cumulative buffer's reader position. */ protected void checkpoint() { ChannelBuffer cumulation = this.cumulation; if (cumulation != null) { checkpoint = cumulation.readerIndex(); } else { checkpoint = -1; // buffer not available (already cleaned up) } } /** * Stores the internal cumulative buffer's reader position and updates * the current decoder state. */ protected void checkpoint(T state) { checkpoint(); setState(state); } /** * Returns the current state of this decoder. * @return the current state of this decoder */ protected T getState() { return state; } /** * Sets the current state of this decoder. * @return the old state of this decoder */ protected T setState(T newState) { T oldState = state; state = newState; return oldState; } /** * Decodes the received packets so far into a frame. * * @param ctx the context of this handler * @param channel the current channel * @param buffer the cumulative buffer of received packets so far. * Note that the buffer might be empty, which means you * should not make an assumption that the buffer contains * at least one byte in your decoder implementation. * @param state the current decoder state ({@code null} if unused) * * @return the decoded frame */ protected abstract Object decode(ChannelHandlerContext ctx, Channel channel, ChannelBuffer buffer, T state) throws Exception; /** * Decodes the received data so far into a frame when the channel is * disconnected. * * @param ctx the context of this handler * @param channel the current channel * @param buffer the cumulative buffer of received packets so far. * Note that the buffer might be empty, which means you * should not make an assumption that the buffer contains * at least one byte in your decoder implementation. * @param state the current decoder state ({@code null} if unused) * * @return the decoded frame */ protected Object decodeLast( ChannelHandlerContext ctx, Channel channel, ChannelBuffer buffer, T state) throws Exception { return decode(ctx, channel, buffer, state); } /** * Calls {@link #decode(ChannelHandlerContext, Channel, ChannelBuffer, Enum)}. This method * should be never used by {@link ReplayingDecoder} itself. But to be safe we should handle it * anyway */ @Override protected final Object decode(ChannelHandlerContext ctx, Channel channel, ChannelBuffer buffer) throws Exception { return decode(ctx, channel, buffer, state); } @Override protected final Object decodeLast( ChannelHandlerContext ctx, Channel channel, ChannelBuffer buffer) throws Exception { return decodeLast(ctx, channel, buffer, state); } @Override public void messageReceived(ChannelHandlerContext ctx, MessageEvent e) throws Exception { Object m = e.getMessage(); if (!(m instanceof ChannelBuffer)) { ctx.sendUpstream(e); return; } ChannelBuffer input = (ChannelBuffer) m; if (!input.readable()) { return; } needsCleanup = true; if (cumulation == null) { // the cumulation buffer is not created yet so just pass the input // to callDecode(...) method cumulation = input; int oldReaderIndex = input.readerIndex(); int inputSize = input.readableBytes(); try { callDecode( ctx, e.getChannel(), input, replayable, e.getRemoteAddress()); } finally { int readableBytes = input.readableBytes(); if (readableBytes > 0) { int inputCapacity = input.capacity(); // check if readableBytes == capacity we can safe the copy as we will not be able to // optimize memory usage anyway boolean copy = readableBytes != inputCapacity && inputCapacity > getMaxCumulationBufferCapacity(); // seems like there is something readable left in the input buffer // or decoder wants a replay - create the cumulation buffer and // copy the input into it ChannelBuffer cumulation; if (checkpoint > 0) { int bytesToPreserve = inputSize - (checkpoint - oldReaderIndex); if (copy) { this.cumulation = cumulation = newCumulationBuffer(ctx, bytesToPreserve); cumulation.writeBytes(input, checkpoint, bytesToPreserve); } else { this.cumulation = input.slice(checkpoint, bytesToPreserve); } } else if (checkpoint == 0) { if (copy) { this.cumulation = cumulation = newCumulationBuffer(ctx, inputSize); cumulation.writeBytes(input, oldReaderIndex, inputSize); cumulation.readerIndex(input.readerIndex()); } else { this.cumulation = cumulation = input.slice(oldReaderIndex, inputSize); cumulation.readerIndex(input.readerIndex()); } } else { if (copy) { this.cumulation = cumulation = newCumulationBuffer(ctx, input.readableBytes()); cumulation.writeBytes(input); } else { this.cumulation = input; } } } else { cumulation = null; } } } else { input = appendToCumulation(input); try { callDecode(ctx, e.getChannel(), input, replayable, e.getRemoteAddress()); } finally { updateCumulation(ctx, input); } } } private void callDecode( ChannelHandlerContext context, Channel channel, ChannelBuffer input, ChannelBuffer replayableInput, SocketAddress remoteAddress) throws Exception { while (input.readable()) { int oldReaderIndex = checkpoint = input.readerIndex(); Object result = null; T oldState = state; try { result = decode(context, channel, replayableInput, state); if (result == null) { if (oldReaderIndex == input.readerIndex() && oldState == state) { throw new IllegalStateException( "null cannot be returned if no data is consumed and state didn't change."); } else { // Previous data has been discarded or caused state transition. // Probably it is reading on. continue; } } } catch (ReplayError replay) { // Return to the checkpoint (or oldPosition) and retry. int checkpoint = this.checkpoint; if (checkpoint >= 0) { input.readerIndex(checkpoint); } else { // Called by cleanup() - no need to maintain the readerIndex // anymore because the buffer has been released already. } } if (result == null) { // Seems like more data is required. // Let us wait for the next notification. break; } if (oldReaderIndex == input.readerIndex() && oldState == state) { throw new IllegalStateException( "decode() method must consume at least one byte " + "if it returned a decoded message (caused by: " + getClass() + ')'); } // A successful decode unfoldAndFireMessageReceived(context, remoteAddress, result); } } @Override protected void cleanup(ChannelHandlerContext ctx, ChannelStateEvent e) throws Exception { try { ChannelBuffer cumulation = this.cumulation; if (!needsCleanup) { return; } needsCleanup = false; replayable.terminate(); if (cumulation != null && cumulation.readable()) { // Make sure all data was read before notifying a closed channel. callDecode(ctx, e.getChannel(), cumulation, replayable, null); } // Call decodeLast() finally. Please note that decodeLast() is // called even if there's nothing more to read from the buffer to // notify a user that the connection was closed explicitly. Object partiallyDecoded = decodeLast(ctx, e.getChannel(), replayable, state); this.cumulation = null; if (partiallyDecoded != null) { unfoldAndFireMessageReceived(ctx, null, partiallyDecoded); } } catch (ReplayError replay) { // Ignore } finally { ctx.sendUpstream(e); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy