com.revinate.guava.util.concurrent.Uninterruptibles Maven / Gradle / Ivy
/*
* Copyright (C) 2011 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.revinate.guava.util.concurrent;
import java.util.concurrent.TimeUnit;
import static java.util.concurrent.TimeUnit.NANOSECONDS;
/**
* Utilities for treating interruptible operations as uninterruptible.
* In all cases, if a thread is interrupted during such a call, the call
* continues to block until the result is available or the timeout elapses,
* and only then re-interrupts the thread.
*
* @author Anthony Zana
* @since 10.0
*/
public final class Uninterruptibles {
// Implementation Note: As of 3-7-11, the logic for each blocking/timeout
// methods is identical, save for method being invoked.
// TODO(user): Support Sleeper somehow (wrapper or interface method)?
/**
* Invokes {@code unit.}{@link TimeUnit#sleep(long) sleep(sleepFor)}
* uninterruptibly.
*/
public static void sleepUninterruptibly(long sleepFor, TimeUnit unit) {
boolean interrupted = false;
try {
long remainingNanos = unit.toNanos(sleepFor);
long end = System.nanoTime() + remainingNanos;
while (true) {
try {
// TimeUnit.sleep() treats negative timeouts just like zero.
NANOSECONDS.sleep(remainingNanos);
return;
} catch (InterruptedException e) {
interrupted = true;
remainingNanos = end - System.nanoTime();
}
}
} finally {
if (interrupted) {
Thread.currentThread().interrupt();
}
}
}
private Uninterruptibles() {}
}