com.salesforce.jgrapht.alg.FloydWarshallShortestPaths Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of AptSpringProcessor Show documentation
Show all versions of AptSpringProcessor Show documentation
This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and
shaded jar.
/*
* (C) Copyright 2009-2017, by Tom Larkworthy and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* This program and the accompanying materials are dual-licensed under
* either
*
* (a) the terms of the GNU Lesser General Public License version 2.1
* as published by the Free Software Foundation, or (at your option) any
* later version.
*
* or (per the licensee's choosing)
*
* (b) the terms of the Eclipse Public License v1.0 as published by
* the Eclipse Foundation.
*/
package com.salesforce.jgrapht.alg;
import java.util.*;
import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.graph.*;
/**
* The Floyd-Warshall algorithm
* finds all shortest paths (all n^2 of them) in O(n^3) time. It can also calculate the graph
* diameter. Note that during construction time, no computations are performed! All computations are
* performed the first time one of the member methods of this class is invoked. The results are
* stored, so all subsequent calls to the same method are computationally efficient. Warning: This
* code has not been tested (and probably doesn't work) on multi-graphs. Code should be updated to
* work properly on multi-graphs.
*
* @param the graph vertex type
* @param the graph edge type
*
* @author Tom Larkworthy
* @author Soren Davidsen ([email protected])
* @author Joris Kinable
* @deprecated In favor of {@link com.salesforce.jgrapht.alg.shortestpath.FloydWarshallShortestPaths}.
*/
@Deprecated
public class FloydWarshallShortestPaths
{
private final Graph graph;
private final List vertices;
private final Map vertexIndices;
private int nShortestPaths = 0;
private double diameter = Double.NaN;
private double[][] d = null;
private int[][] backtrace = null;
private int[][] lastHopMatrix = null;
private Map>> paths = null;
/**
* Create a new instance of the Floyd-Warshall all-pairs shortest path algorithm.
*
* @param graph the input graph
*/
public FloydWarshallShortestPaths(Graph graph)
{
this.graph = graph;
this.vertices = new ArrayList<>(graph.vertexSet());
this.vertexIndices = new HashMap<>(this.vertices.size());
int i = 0;
for (V vertex : vertices) {
vertexIndices.put(vertex, i++);
}
}
/**
* @return the graph on which this algorithm operates
*/
public Graph getGraph()
{
return graph;
}
/**
* @return total number of shortest paths
*/
public int getShortestPathsCount()
{
lazyCalculatePaths();
return nShortestPaths;
}
/**
* Calculates the matrix of all shortest paths, but does not populate the paths map.
*/
private void lazyCalculateMatrix()
{
if (d != null) {
// already done
return;
}
int n = vertices.size();
// init the backtrace matrix
backtrace = new int[n][n];
for (int i = 0; i < n; i++) {
Arrays.fill(backtrace[i], -1);
}
// initialize matrix, 0
d = new double[n][n];
for (int i = 0; i < n; i++) {
Arrays.fill(d[i], Double.POSITIVE_INFINITY);
}
// initialize matrix, 1
for (int i = 0; i < n; i++) {
d[i][i] = 0.0;
}
// initialize matrix, 2
if (graph instanceof UndirectedGraph, ?>) {
for (E edge : graph.edgeSet()) {
int v_1 = vertexIndices.get(graph.getEdgeSource(edge));
int v_2 = vertexIndices.get(graph.getEdgeTarget(edge));
d[v_1][v_2] = d[v_2][v_1] = graph.getEdgeWeight(edge);
backtrace[v_1][v_2] = v_2;
backtrace[v_2][v_1] = v_1;
}
} else { // This works for both Directed and Mixed graphs! Iterating over
// the arcs and querying source/sink does not suffice for graphs
// which contain both edges and arcs
DirectedGraph directedGraph = (DirectedGraph) graph;
for (V v1 : directedGraph.vertexSet()) {
int v_1 = vertexIndices.get(v1);
for (V v2 : Graphs.successorListOf(directedGraph, v1)) {
int v_2 = vertexIndices.get(v2);
d[v_1][v_2] = directedGraph.getEdgeWeight(directedGraph.getEdge(v1, v2));
backtrace[v_1][v_2] = v_2;
}
}
}
// run fw alg
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
double ik_kj = d[i][k] + d[k][j];
if (ik_kj < d[i][j]) {
d[i][j] = ik_kj;
backtrace[i][j] = backtrace[i][k];
}
}
}
}
}
/**
* Get the length of a shortest path.
*
* @param a first vertex
* @param b second vertex
*
* @return shortest distance between a and b
*/
public double shortestDistance(V a, V b)
{
lazyCalculateMatrix();
return d[vertexIndices.get(a)][vertexIndices.get(b)];
}
/**
* @return the diameter (longest of all the shortest paths) computed for the graph. If the graph
* is vertexless, return 0.0.
*/
public double getDiameter()
{
lazyCalculateMatrix();
if (Double.isNaN(diameter)) {
diameter = 0.0;
int n = vertices.size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (!Double.isInfinite(d[i][j]) && (d[i][j] > diameter)) {
diameter = d[i][j];
}
}
}
}
return diameter;
}
/**
* Get the shortest path between two vertices.
*
* @param a from vertex
* @param b to vertex
*
* @return the path, or null if none found
*/
public GraphPath getShortestPath(V a, V b)
{
lazyCalculateMatrix();
int v_a = vertexIndices.get(a);
int v_b = vertexIndices.get(b);
if (backtrace[v_a][v_b] == -1) { // No path exists
return null;
}
// Reconstruct the path
List pathVertexList = new ArrayList<>();
pathVertexList.add(a);
List edges = new ArrayList<>();
int u = v_a;
while (u != v_b) {
int v = backtrace[u][v_b];
edges.add(graph.getEdge(vertices.get(u), vertices.get(v)));
pathVertexList.add(vertices.get(v));
u = v;
}
return new GraphWalk<>(graph, a, b, pathVertexList, edges, d[v_a][v_b]);
}
/**
* Get the shortest path between two vertices as a list of vertices.
*
* @param a from vertex
* @param b to vertex
* @return the path, or null if none found
*/
public List getShortestPathAsVertexList(V a, V b)
{
lazyCalculateMatrix();
int v_a = vertexIndices.get(a);
int v_b = vertexIndices.get(b);
if (backtrace[v_a][v_b] == -1) { // No path exists
return null;
}
// Reconstruct the path
List pathVertexList = new ArrayList<>();
pathVertexList.add(a);
int u = v_a;
while (u != v_b) {
int v = backtrace[u][v_b];
pathVertexList.add(vertices.get(v));
u = v;
}
return pathVertexList;
}
/**
* Get shortest paths from a vertex to all other vertices in the graph.
*
* @param v the originating vertex
*
* @return List of paths
*/
public List> getShortestPaths(V v)
{
lazyCalculatePaths();
return Collections.unmodifiableList(paths.get(v));
}
/**
* Get all shortest paths in the graph.
*
* @return List of paths
*/
public List> getShortestPaths()
{
lazyCalculatePaths();
List> allPaths = new ArrayList<>();
for (List> pathSubset : paths.values()) {
allPaths.addAll(pathSubset);
}
return allPaths;
}
/**
* Returns the first hop, i.e., the second node on the shortest path from a to b. Lookup time is
* O(1). If the shortest path from a to b is a,c,d,e,b, this method returns c. If the next
* invocation would query the first hop on the shortest path from c to b, vertex d would be
* returned, etc. This method is computationally cheaper than
* getShortestPathAsVertexList(a,b).get(0);
*
* @param a source vertex
* @param b target vertex
* @return next hop on the shortest path from a to b, or null when there exists no path from a
* to b.
*/
public V getFirstHop(V a, V b)
{
lazyCalculatePaths();
int v_a = vertexIndices.get(a);
int v_b = vertexIndices.get(b);
if (backtrace[v_a][v_b] == -1) // No path exists
return null;
else
return vertices.get(backtrace[v_a][v_b]);
}
/**
* Returns the last hop, i.e., the second to last node on the shortest path from a to b. Lookup
* time is O(1). If the shortest path from a to b is a,c,d,e,b, this method returns e. If the
* next invocation would query the next hop on the shortest path from c to e, vertex d would be
* returned, etc. This method is computationally cheaper than
* getShortestPathAsVertexList(a,b).get(shortestPathListSize-1);. The first invocation of this
* method populates a last hop matrix.
*
* @param a source vertex
* @param b target vertex
* @return last hop on the shortest path from a to b, or null when there exists no path from a
* to b.
*/
public V getLastHop(V a, V b)
{
lazyCalculatePaths();
int v_a = vertexIndices.get(a);
int v_b = vertexIndices.get(b);
if (backtrace[v_a][v_b] == -1) // No path exists
return null;
else {
this.populateLastHopMatrix();
return vertices.get(lastHopMatrix[v_a][v_b]);
}
}
/**
* Populate the last hop matrix, using the earlier computed backtrace matrix.
*/
private void populateLastHopMatrix()
{
if (lastHopMatrix != null)
return;
// Initialize matrix
lastHopMatrix = new int[vertices.size()][vertices.size()];
for (int i = 0; i < vertices.size(); i++)
Arrays.fill(lastHopMatrix[i], -1);
// Populate matrix
for (int i = 0; i < vertices.size(); i++) {
for (int j = 0; j < vertices.size(); j++) {
if (i == j || lastHopMatrix[i][j] != -1 || backtrace[i][j] == -1)
continue;
// Reconstruct the path from i to j
List pathIndexList = new ArrayList<>();
pathIndexList.add(i);
int u = i, v;
while (u != j) {
v = backtrace[u][j];
pathIndexList.add(v);
u = v;
}
// Iterate over the path, setting the lastHopMatrix from i to path[v] equal to
// path[v-1], for all v=1...pathLength.
for (int w = 0; w < pathIndexList.size() - 1; w++) {
u = pathIndexList.get(w);
v = pathIndexList.get(w + 1);
lastHopMatrix[i][v] = u;
}
}
}
}
/**
* Calculate the shortest paths (not done per default) TODO: This method can be optimized.
* Instead of calculating each path individidually, use a constructive method. TODO: I.e. if we
* have a shortest path from i to j: [i,....j] and we know that the shortest path from j to k,
* we can simply glue the paths together to obtain the shortest path from i to k
*/
private void lazyCalculatePaths()
{
// already we have calculated it once.
if (paths != null) {
return;
}
lazyCalculateMatrix();
paths = new LinkedHashMap<>();
int n = vertices.size();
for (int i = 0; i < n; i++) {
V v_i = vertices.get(i);
paths.put(v_i, new ArrayList<>());
for (int j = 0; j < n; j++) {
if (i == j) {
continue;
}
V v_j = vertices.get(j);
GraphPath path = getShortestPath(v_i, v_j);
if (path != null) {
paths.get(v_i).add(path);
nShortestPaths++;
}
}
}
}
}
// End FloydWarshallShortestPaths.java
© 2015 - 2025 Weber Informatics LLC | Privacy Policy