com.salesforce.jgrapht.generate.GnmRandomBipartiteGraphGenerator Maven / Gradle / Ivy
/*
* (C) Copyright 2004-2017, by Michael Behrisch, Dimitrios Michail and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* This program and the accompanying materials are dual-licensed under
* either
*
* (a) the terms of the GNU Lesser General Public License version 2.1
* as published by the Free Software Foundation, or (at your option) any
* later version.
*
* or (per the licensee's choosing)
*
* (b) the terms of the Eclipse Public License v1.0 as published by
* the Eclipse Foundation.
*/
package com.salesforce.jgrapht.generate;
import java.util.*;
import com.salesforce.jgrapht.*;
/**
* Create a random bipartite graph based on the G(n, M) Erdős–Rényi model. See the Wikipedia article
* for details and references about Random
* Graphs and the
* Erdős–Rényi model
* .
*
* The user provides the sizes n1 and n2 of the two partitions (n1+n2=n) and a number m which is the
* total number of edges to create. The generator supports both directed and undirected graphs.
*
* @author Michael Behrisch
* @author Dimitrios Michail
* @since Sep 13, 2004
*
* @param the graph vertex type
* @param the graph edge type
*
* @see GnpRandomBipartiteGraphGenerator
*/
public class GnmRandomBipartiteGraphGenerator
implements GraphGenerator
{
private final Random rng;
private final int n1;
private final int n2;
private final int m;
/**
* Create a new random bipartite graph generator. The generator uses the G(n, m) model when n =
* n1 + n2 and the bipartite graph has one partition with size n1 and one partition with size
* n2. In this model a graph is chosen uniformly at random from the collection of bipartite
* graphs whose partitions have sizes n1 and n2 respectively and m edges.
*
* @param n1 number of vertices of the first partition
* @param n2 number of vertices of the second partition
* @param m the number of edges
*/
public GnmRandomBipartiteGraphGenerator(int n1, int n2, int m)
{
this(n1, n2, m, new Random());
}
/**
* Create a new random bipartite graph generator. The generator uses the G(n, m) model when n =
* n1 + n2 and the bipartite graph has one partition with size n1 and one partition with size
* n2. In this model a graph is chosen uniformly at random from the collection of bipartite
* graphs whose partitions have sizes n1 and n2 respectively and m edges.
*
* @param n1 number of vertices of the first partition
* @param n2 number of vertices of the second partition
* @param m the number of edges
* @param seed seed for the random number generator
*/
public GnmRandomBipartiteGraphGenerator(int n1, int n2, int m, long seed)
{
this(n1, n2, m, new Random(seed));
}
/**
* Create a new random bipartite graph generator. The generator uses the G(n, m) model when n =
* n1 + n2 and the bipartite graph has one partition with size n1 and one partition with size
* n2. In this model a graph is chosen uniformly at random from the collection of bipartite
* graphs whose partitions have sizes n1 and n2 respectively and m edges.
*
* @param n1 number of vertices of the first partition
* @param n2 number of vertices of the second partition
* @param m the number of edges
* @param rng random number generator
*/
public GnmRandomBipartiteGraphGenerator(int n1, int n2, int m, Random rng)
{
if (n1 < 0) {
throw new IllegalArgumentException("number of vertices must be non-negative");
}
this.n1 = n1;
if (n2 < 0) {
throw new IllegalArgumentException("number of vertices must be non-negative");
}
this.n2 = n2;
if (m < 0) {
throw new IllegalArgumentException("number of edges must be non-negative");
}
this.m = m;
this.rng = rng;
}
/**
* Generates a random bipartite graph.
*
* @param target the target graph
* @param vertexFactory the vertex factory
* @param resultMap not used by this generator, can be null
*/
@Override
public void generateGraph(
Graph target, VertexFactory vertexFactory, Map resultMap)
{
if (n1 + n2 == 0) {
return;
}
// create vertices
int previousVertexSetSize = target.vertexSet().size();
Map partitionA = new HashMap<>(n1);
for (int i = 0; i < n1; i++) {
V v = vertexFactory.createVertex();
target.addVertex(v);
partitionA.put(i, v);
}
Map partitionB = new HashMap<>(n2);
for (int i = 0; i < n2; i++) {
V v = vertexFactory.createVertex();
target.addVertex(v);
partitionB.put(i, v);
}
if (target.vertexSet().size() != previousVertexSetSize + n1 + n2) {
throw new IllegalArgumentException(
"Vertex factory did not produce " + (n1 + n2) + " distinct vertices.");
}
// check if graph is directed
final boolean isDirected = target instanceof DirectedGraph, ?>;
int maxAllowedEdges = Integer.MAX_VALUE;
try {
if (isDirected) {
maxAllowedEdges = Math.multiplyExact(2, Math.multiplyExact(n1, n2));
} else {
// assume undirected
maxAllowedEdges = Math.multiplyExact(n1, n2);
}
} catch (ArithmeticException e) {
maxAllowedEdges = Integer.MAX_VALUE;
}
if (m > maxAllowedEdges) {
throw new IllegalArgumentException(
"number of edges not valid for bipartite graph with " + n1 + " and " + n2
+ " vertices");
}
// create edges
int edgesCounter = 0;
while (edgesCounter < m) {
// find random edge
V s = partitionA.get(rng.nextInt(n1));
V t = partitionB.get(rng.nextInt(n2));
// if directed, maybe reverse direction
if (isDirected && rng.nextBoolean()) {
V tmp = s;
s = t;
t = tmp;
}
// check whether to add the edge
if (!target.containsEdge(s, t)) {
try {
E resultEdge = target.addEdge(s, t);
if (resultEdge != null) {
edgesCounter++;
}
} catch (IllegalArgumentException e) {
// do nothing, just ignore the edge
}
}
}
}
}
// End GnmRandomBipartiteGraphGenerator.java
© 2015 - 2025 Weber Informatics LLC | Privacy Policy