All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.spanning.AbstractCapacitatedMinimumSpanningTree Maven / Gradle / Ivy

/*
 * (C) Copyright 2018-2018, by Christoph Grüne and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.spanning;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.connectivity.*;
import com.salesforce.jgrapht.alg.interfaces.*;
import com.salesforce.jgrapht.alg.util.*;
import com.salesforce.jgrapht.graph.*;
import com.salesforce.jgrapht.traverse.*;
import com.salesforce.jgrapht.util.*;

import java.util.*;

/**
 * This is an abstract class for capacitated minimum spanning tree algorithms. This class manages
 * the basic instance information and a solution representation {see
 * CapacitatedSpanningTreeSolutionRepresentation} for a capacitated spanning tree.
 *
 * @param  the vertex type
 * @param  the edge type
 *
 * @author Christoph Grüne
 * @since July 18, 2018
 */
public abstract class AbstractCapacitatedMinimumSpanningTree
    implements
    CapacitatedSpanningTreeAlgorithm
{

    /**
     * the input graph.
     */
    protected final Graph graph;

    /**
     * the designated root of the CMST.
     */
    protected final V root;

    /**
     * the maximal capacity for each subtree.
     */
    protected final double capacity;

    /**
     * the demand function over all vertices.
     */
    protected final Map demands;

    /**
     * representation of the solution
     */
    protected CapacitatedSpanningTreeSolutionRepresentation bestSolution;

    /**
     * Construct a new abstract capacitated minimum spanning tree algorithm.
     *
     * @param graph the base graph to calculate the capacitated spanning tree for
     * @param root the root of the capacitated spanning tree
     * @param capacity the edge capacity constraint
     * @param demands the demands of the vertices
     */
    protected AbstractCapacitatedMinimumSpanningTree(
        Graph graph, V root, double capacity, Map demands)
    {
        this.graph = Objects.requireNonNull(graph, "Graph cannot be null");
        if (!graph.getType().isUndirected()) {
            throw new IllegalArgumentException("Graph must be undirected");
        }
        if (!new ConnectivityInspector<>(graph).isConnected()) {
            throw new IllegalArgumentException(
                "Graph must be connected. Otherwise, there is no capacitated minimum spanning tree.");
        }
        this.root = Objects.requireNonNull(root, "Root cannot be null");
        this.capacity = capacity;
        this.demands = Objects.requireNonNull(demands, "Demands cannot be null");
        for (V vertex : graph.vertexSet()) {
            if (vertex != root) {
                Double demand = demands.get(vertex);
                if (demand == null) {
                    throw new IllegalArgumentException(
                        "Demands does not provide a demand for every vertex.");
                }
                if (demand > capacity) {
                    throw new IllegalArgumentException(
                        "Demands must not be greater than the capacity. Otherwise, there is no capacitated minimum spanning tree.");
                }
            }
        }

        this.bestSolution = new CapacitatedSpanningTreeSolutionRepresentation();
    }

    @Override
    public abstract CapacitatedSpanningTree getCapacitatedSpanningTree();

    /**
     * This class represents a solution instance by managing the labels and the partition mapping.
     * With the help of this class, a capacitated spanning tree based on the label and partition
     * mapping can be calculated.
     */
    protected class CapacitatedSpanningTreeSolutionRepresentation
        implements
        Cloneable
    {

        /**
         * labeling of the improvement graph vertices. There are two vertices in the improvement
         * graph for every vertex in the input graph: the vertex indicating the vertex itself and
         * the vertex indicating the subtree.
         */
        private Map labels;

        /**
         * the implicit partition defined by the subtrees
         */
        private Map, Double>> partition;

        /**
         * the next free label
         */
        private int nextFreeLabel;

        /**
         * Constructs a new solution representation for the CMST problem.
         */
        public CapacitatedSpanningTreeSolutionRepresentation()
        {
            this(new HashMap<>(), new HashMap<>());
        }

        /**
         * Constructs a new solution representation for the CMST problem based on
         * labels and partition. All labels have to be positive.
         *
         * @param labels the labels of the subsets in the partition
         * @param partition the partition map
         */
        public CapacitatedSpanningTreeSolutionRepresentation(
            Map labels, Map, Double>> partition)
        {
            for (Integer i : labels.values()) {
                if (i < 0) {
                    throw new IllegalArgumentException("Labels are not non-negative");
                }
            }
            for (Integer i : partition.keySet()) {
                if (i < 0) {
                    throw new IllegalArgumentException("Labels are not non-negative");
                }
            }
            this.labels = labels;
            this.partition = partition;
            getNextFreeLabel();
        }

        /**
         * Calculates the resulting spanning tree based on this solution representation.
         *
         * @return the resulting spanning tree based on this solution representation
         */
        public CapacitatedSpanningTreeAlgorithm.CapacitatedSpanningTree calculateResultingSpanningTree()
        {
            Set spanningTreeEdges = new HashSet<>();
            double weight = 0;

            for (Pair, Double> part : partition.values()) {
                // get spanning tree on the part inclusive the root vertex
                Set set = part.getFirst();
                set.add(root);
                SpanningTreeAlgorithm.SpanningTree subtree =
                    new PrimMinimumSpanningTree<>(new AsSubgraph<>(graph, set, graph.edgeSet()))
                        .getSpanningTree();
                set.remove(root);

                // add the partial solution to the overall solution
                spanningTreeEdges.addAll(subtree.getEdges());
                weight += subtree.getWeight();
            }

            return new CapacitatedSpanningTreeImpl<>(labels, partition, spanningTreeEdges, weight);
        }

        /**
         * Moves vertex from the subset represented by fromLabel to the
         * subset represented by toLabel.
         *
         * @param vertex the vertex to move
         * @param fromLabel the subset to move the vertex from
         * @param toLabel the subset to move the vertex to
         */
        public void moveVertex(V vertex, Integer fromLabel, Integer toLabel)
        {
            labels.put(vertex, toLabel);

            Set oldPart = partition.get(fromLabel).getFirst();
            oldPart.remove(vertex);
            partition.put(
                fromLabel,
                Pair.of(oldPart, partition.get(fromLabel).getSecond() - demands.get(vertex)));

            if (!partition.keySet().contains(toLabel)) {
                partition.put(toLabel, Pair.of(new HashSet<>(), 0.0));
            }
            Set newPart = partition.get(toLabel).getFirst();
            newPart.add(vertex);
            partition.put(
                toLabel,
                Pair.of(newPart, partition.get(toLabel).getSecond() + demands.get(vertex)));
        }

        /**
         * Moves all vertices in vertices from the subset represented by
         * fromLabel to the subset represented by toLabel.
         *
         * @param vertices the vertices to move
         * @param fromLabel the subset to move the vertices from
         * @param toLabel the subset to move the vertices to
         */
        public void moveVertices(Set vertices, Integer fromLabel, Integer toLabel)
        {
            // update labels and calculate weight change
            double weightOfVertices = 0;
            for (V v : vertices) {
                weightOfVertices += demands.get(v);
                labels.put(v, toLabel);
            }

            // update partition
            if (!partition.keySet().contains(toLabel)) {
                partition.put(toLabel, Pair.of(new HashSet<>(), 0.0));
            }
            Set newPart = partition.get(toLabel).getFirst();
            newPart.addAll(vertices);
            partition.put(
                toLabel, Pair.of(newPart, partition.get(toLabel).getSecond() + weightOfVertices));

            Set oldPart = partition.get(fromLabel).getFirst();
            oldPart.removeAll(vertices);
            partition.put(
                fromLabel,
                Pair.of(oldPart, partition.get(fromLabel).getSecond() - weightOfVertices));
        }

        /**
         * Refines the partition by adding new subsets if the designated root has more than one
         * subtree in the subset label of the partition.
         *
         * @param vertexSubset the subset represented by label, that is the subset that
         *        has to be refined
         * @param label the label of the subset of the partition that were refined
         *
         * @return the set of all labels of subsets that were changed during the refinement
         */
        public Set partitionSubtreesOfSubset(Set vertexSubset, int label)
        {

            List> subtreesOfSubset = new LinkedList<>();

            if (vertexSubset.isEmpty()) {
                return new HashSet<>();
            }

            // initialize a subgraph containing the MST of the subset
            vertexSubset.add(root);
            SpanningTreeAlgorithm.SpanningTree spanningTree = new PrimMinimumSpanningTree<>(
                new AsSubgraph<>(graph, vertexSubset, graph.edgeSet())).getSpanningTree();
            Graph spanningTreeGraph =
                new AsSubgraph<>(graph, vertexSubset, spanningTree.getEdges());

            int degreeOfRoot = spanningTreeGraph.degreeOf(root);
            if (degreeOfRoot == 1) {
                vertexSubset.remove(root);
                return new HashSet<>();
            }

            // store the affected labels
            Set affectedLabels = new HashSet<>();

            // search for subtrees rooted at root
            DepthFirstIterator depthFirstIterator =
                new DepthFirstIterator<>(spanningTreeGraph, root);
            if (depthFirstIterator.hasNext()) {
                depthFirstIterator.next();
            }

            int numberOfRootEdgesExplored = 0;
            Set currentSubtree = new HashSet<>();

            while (depthFirstIterator.hasNext()) {
                V next = depthFirstIterator.next();

                // exploring new subtree
                if (spanningTreeGraph.containsEdge(root, next)) {
                    if (!currentSubtree.isEmpty()) {
                        subtreesOfSubset.add(currentSubtree);
                        currentSubtree = new HashSet<>();
                    }

                    numberOfRootEdgesExplored++;

                    // we do not have to move more vertices
                    if (numberOfRootEdgesExplored == degreeOfRoot) {
                        break;
                    }
                }
                currentSubtree.add(next);
            }

            // move the subtrees to new subsets in the partition
            for (Set subtree : subtreesOfSubset) {
                int nextLabel = this.getNextFreeLabel();
                this.moveVertices(subtree, label, nextLabel);
                affectedLabels.add(nextLabel);
            }

            vertexSubset.remove(root);
            return affectedLabels;
        }

        /**
         * Cleans up the solution representation by removing all empty sets from the partition.
         */
        public void cleanUp()
        {
            partition.entrySet().removeIf(entry -> entry.getValue().getFirst().isEmpty());
        }

        /**
         * Returns the next free label in the label map respectively partition
         *
         * @return the next free label in the label map respectively partition
         */
        public int getNextFreeLabel()
        {
            int freeLabel = nextFreeLabel;
            nextFreeLabel++;
            while (partition.keySet().contains(nextFreeLabel)) {
                nextFreeLabel++;
            }
            return freeLabel;
        }

        /**
         * Returns the label of the subset that contains vertex.
         *
         * @param vertex the vertex to return the label from
         *
         * @return the label of vertex
         */
        public int getLabel(V vertex)
        {
            return labels.get(vertex);
        }

        /**
         * Returns all labels of all subsets.
         *
         * @return the labels of all subsets
         */
        public Set getLabels()
        {
            return partition.keySet();
        }

        /**
         * Returns the set of vertices that are in the subset with label label.
         *
         * @param label the label of the subset to return the vertices from
         *
         * @return the set of vertices that are in the subset with label label
         */
        public Set getPartitionSet(Integer label)
        {
            return partition.get(label).getFirst();
        }

        /**
         * Returns the sum of the weights of all vertices that are in the subset with label
         * label.
         *
         * @param label the label of the subset to return the weight from
         *
         * @return the sum of the weights of all vertices that are in the subset with label
         *         label
         */
        public double getPartitionWeight(Integer label)
        {
            return partition.get(label).getSecond();
        }

        /**
         * Returns a shallow copy of this solution representation instance. Vertices are not cloned.
         *
         * @return a shallow copy of this solution representation.
         *
         * @throws RuntimeException in case the clone is not supported
         *
         * @see java.lang.Object#clone()
         */
        public CapacitatedSpanningTreeSolutionRepresentation clone()
        {
            try {
                CapacitatedSpanningTreeSolutionRepresentation capacitatedSpanningTreeSolutionRepresentation =
                    TypeUtil.uncheckedCast(super.clone());
                capacitatedSpanningTreeSolutionRepresentation.labels = new HashMap<>(labels);
                capacitatedSpanningTreeSolutionRepresentation.partition = new HashMap<>();
                for (Map.Entry, Double>> entry : this.partition.entrySet()) {
                    capacitatedSpanningTreeSolutionRepresentation.partition.put(
                        entry.getKey(),
                        Pair.of(
                            new HashSet<>(entry.getValue().getFirst()),
                            entry.getValue().getSecond()));
                }
                capacitatedSpanningTreeSolutionRepresentation.nextFreeLabel = this.nextFreeLabel;

                return capacitatedSpanningTreeSolutionRepresentation;
            } catch (CloneNotSupportedException e) {
                e.printStackTrace();
                throw new RuntimeException();
            }
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy