com.salesforce.jgrapht.alg.spanning.EsauWilliamsCapacitatedMinimumSpanningTree Maven / Gradle / Ivy
/*
* (C) Copyright 2018-2018, by Christoph Grüne and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package com.salesforce.jgrapht.alg.spanning;
import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.util.*;
import java.util.*;
/**
* Implementation of a randomized version of the Esau-Williams heuristic, a greedy randomized
* adaptive search heuristic (GRASP) for the capacitated minimum spanning tree (CMST) problem. It
* calculates a suboptimal CMST. The original version can be found in L. R. Esau and K. C. Williams.
* 1966. On teleprocessing system design: part II a method for approximating the optimal network.
* IBM Syst. J. 5, 3 (September 1966), 142-147. DOI=http://dx.doi.org/10.1147/sj.53.0142 This
* implementation runs in polynomial time O(|V|^3).
*
* This implementation is a randomized version described in Ahuja, Ravindra K., Orlin, James B., and
* Sharma, Dushyant, (1998). New neighborhood search structures for the capacitated minimum spanning
* tree problem, No WP 4040-98. Working papers, Massachusetts Institute of Technology (MIT), Sloan
* School of Management.
*
* This version runs in polynomial time dependent on the number of considered operations per
* iteration numberOfOperationsParameter
(denoted by p), such that runs is in $O(|V|^3
* + p|V|) = O(|V|^3)$ since $p \leq |V|$.
*
* A Capacitated Minimum
* Spanning Tree (CMST) is a rooted minimal cost spanning tree that satisfies the capacity
* constrained on all trees that are connected to the designated root. The problem is NP-hard.
*
* @param the vertex type
* @param the edge type
*
* @author Christoph Grüne
* @since July 12, 2018
*/
public class EsauWilliamsCapacitatedMinimumSpanningTree
extends
AbstractCapacitatedMinimumSpanningTree
{
/**
* the number of the most profitable operations for every iteration considered in the procedure.
*/
private final int numberOfOperationsParameter;
/**
* contains whether the algorithm was executed
*/
private boolean isAlgorithmExecuted;
/**
* Constructs an Esau-Williams GRASP algorithm instance.
*
* @param graph the graph
* @param root the root of the CMST
* @param capacity the capacity constraint of the CMST
* @param weights the weights of the vertices
* @param numberOfOperationsParameter the parameter how many best vertices are considered in the
* procedure
*/
public EsauWilliamsCapacitatedMinimumSpanningTree(
Graph graph, V root, double capacity, Map weights,
int numberOfOperationsParameter)
{
super(graph, root, capacity, weights);
this.numberOfOperationsParameter = numberOfOperationsParameter;
this.isAlgorithmExecuted = false;
}
/**
* {@inheritDoc}
*
* Returns a capacitated spanning tree computed by the Esau-Williams algorithm.
*/
@Override
public CapacitatedSpanningTree getCapacitatedSpanningTree()
{
if (isAlgorithmExecuted) {
return bestSolution.calculateResultingSpanningTree();
}
bestSolution = getSolution();
CapacitatedSpanningTree cmst = bestSolution.calculateResultingSpanningTree();
isAlgorithmExecuted = true;
if (!cmst.isCapacitatedSpanningTree(graph, root, capacity, demands)) {
throw new IllegalArgumentException(
"This graph does not have a capacitated minimum spanning tree with the given capacity and demands.");
}
return cmst;
}
/**
* Calculates a partition representation of the capacitated spanning tree. With that, it is
* possible to calculate the to the partition corresponding capacitated spanning tree in
* polynomial time by calculating the MSTs. The labels of the partition that are returned are
* non-negative.
*
* @return a representation of the partition of the capacitated spanning tree that has
* non-negative labels.
*/
protected CapacitatedSpanningTreeSolutionRepresentation getSolution()
{
/*
* labeling of the improvement graph vertices. There are two vertices in the improvement
* graph for every vertex in the input graph: the vertex indicating the vertex itself and
* the vertex indicating the subtree.
*/
Map labels = new HashMap<>();
/*
* the implicit partition defined by the subtrees
*/
Map, Double>> partition = new HashMap<>();
/*
* initialize labels and partitions by assigning every vertex to a new part and create
* solution representation
*/
int counter = 0;
for (V v : graph.vertexSet()) {
if (v != root) {
labels.put(v, counter);
Set currentPart = new HashSet<>();
currentPart.add(v);
partition.put(counter, Pair.of(currentPart, demands.get(v)));
counter++;
}
}
/*
* construct a new solution representation with the initialized labels and partition
*/
bestSolution = new CapacitatedSpanningTreeSolutionRepresentation(labels, partition);
/*
* map that contains the current savings for all vertices
*/
Map savings = new HashMap<>();
/*
* map that contains the current closest vertex for all vertices
*/
Map closestVertex = new HashMap<>();
/*
* map that contains all labels of partition the vertex cannot be assigned because the
* capacity would be exceeded
*/
Map> restrictionMap = new HashMap<>();
/*
* map that contains the vertex that is nearest to the root vertex for all labels of the
* partition
*/
Map shortestGate = new HashMap<>();
/*
* set of vertices that have to be considered in the current iteration
*/
Set vertices = new HashSet<>(graph.vertexSet());
vertices.remove(root);
while (true) {
for (Iterator it = vertices.iterator(); it.hasNext();) {
V v = it.next();
V closestVertexToV = calculateClosestVertex(v, restrictionMap, shortestGate);
if (closestVertexToV == null) {
// there is not valid closest vertex to connect with, i.e. v will not be
// connected to any vertex
it.remove();
savings.remove(v);
continue;
}
// store closest vertex to v1
closestVertex.put(v, closestVertexToV);
// store the maximum saving and the corresponding vertex
savings.put(
v, getDistance(shortestGate.getOrDefault(bestSolution.getLabel(v), v), root)
- getDistance(v, closestVertexToV));
}
// calculate list of best operations
LinkedList bestVertices = getListOfBestOptions(savings);
if (!bestVertices.isEmpty()) {
V vertexToMove = bestVertices.get((int) (Math.random() * bestVertices.size()));
// update shortestGate
Integer labelOfVertexToMove = bestSolution.getLabel(vertexToMove);
V closestMoveVertex = closestVertex.get(vertexToMove);
Integer labelOfClosestMoveVertex = bestSolution.getLabel(closestMoveVertex);
V shortestGate1 = shortestGate.getOrDefault(labelOfVertexToMove, vertexToMove);
V shortestGate2 =
shortestGate.getOrDefault(labelOfClosestMoveVertex, closestMoveVertex);
/*
* Do improving move. The case distinction is important such that the the
* restriction map uses minimal space. If the restriction map contains the label of
* the part with bigger weight, i.e. the vertex cannot be connected to this part,
* the label is still correct and is not the label of the old part, which will be
* deleted by the move operation.
*/
if (bestSolution.getPartitionWeight(labelOfVertexToMove) < bestSolution
.getPartitionWeight(labelOfClosestMoveVertex))
{
bestSolution.moveVertices(
bestSolution.getPartitionSet(labelOfVertexToMove), labelOfVertexToMove,
labelOfClosestMoveVertex);
if (getDistance(shortestGate1, root) < getDistance(shortestGate2, root)) {
shortestGate.put(labelOfClosestMoveVertex, shortestGate1);
} else {
shortestGate.put(labelOfClosestMoveVertex, shortestGate2);
}
} else {
bestSolution.moveVertices(
bestSolution.getPartitionSet(labelOfClosestMoveVertex),
labelOfClosestMoveVertex, labelOfVertexToMove);
if (getDistance(shortestGate1, root) < getDistance(shortestGate2, root)) {
shortestGate.put(labelOfVertexToMove, shortestGate1);
} else {
shortestGate.put(labelOfVertexToMove, shortestGate2);
}
}
} else {
break;
}
}
CapacitatedSpanningTreeSolutionRepresentation result =
new CapacitatedSpanningTreeSolutionRepresentation(labels, partition);
result.cleanUp();
Set labelSet = new HashSet<>(result.getLabels());
for (Integer label : labelSet) {
result.partitionSubtreesOfSubset(result.getPartitionSet(label), label);
}
return result;
}
/**
* Returns the list of the best options as stored in savings
.
*
* @param savings the savings calculated in the algorithm (see getSolution())
* @return the list of the numberOfOperationsParameter
best options
*/
private LinkedList getListOfBestOptions(Map savings)
{
LinkedList bestVertices = new LinkedList<>();
for (Map.Entry entry : savings.entrySet()) {
/*
* insert current tradeOffFunction entry at the position such that the list is order by
* the tradeOff and the size of the list is at most numberOfOperationsParameter
*/
int position = 0;
for (V v : bestVertices) {
if (savings.get(v) < entry.getValue()) {
break;
}
position++;
}
if (bestVertices.size() == numberOfOperationsParameter) {
if (position < bestVertices.size()) {
bestVertices.removeLast();
bestVertices.add(position, entry.getKey());
}
} else {
bestVertices.addLast(entry.getKey());
}
}
return bestVertices;
}
/**
* Calculates the closest vertex to vertex
such that the connection of
* vertex
to the subtree of the closest vertex does not violate the capacity
* constraint and the savings are positive. Otherwise null is returned.
*
* @param vertex the vertex to find a valid closest vertex for
* @param restrictionMap the set of labels of sets of the partition, in which the capacity
* constraint is violated.
* @return the closest valid vertex and null, if no valid vertex exists
*/
private V calculateClosestVertex(
V vertex, Map> restrictionMap, Map shortestGate)
{
V closestVertexToV1 = null;
double distanceToRoot;
V shortestGateOfV = shortestGate.get(bestSolution.getLabel(vertex));
if (shortestGateOfV != null) {
distanceToRoot = getDistance(shortestGateOfV, root);
} else {
distanceToRoot = getDistance(vertex, root);
}
// calculate closest vertex to v1
for (Integer label : bestSolution.getLabels()) {
Set restrictionSet = restrictionMap.get(vertex);
if (restrictionSet == null || !restrictionSet.contains(label)) {
Set part = bestSolution.getPartitionSet(label);
if (!part.contains(vertex)) {
for (V v2 : part) {
if (graph.containsEdge(vertex, v2)) {
double newWeight = bestSolution
.getPartitionWeight(bestSolution.getLabel(v2))
+ bestSolution.getPartitionWeight(bestSolution.getLabel(vertex));
if (newWeight <= capacity) {
double currentEdgeWeight = getDistance(vertex, v2);
if (currentEdgeWeight < distanceToRoot) {
closestVertexToV1 = v2;
distanceToRoot = currentEdgeWeight;
}
} else {
/*
* the capacity would be exceeded if the vertex would be assigned to
* this part, so add the part to the restricted parts
*/
Set restriction =
restrictionMap.computeIfAbsent(vertex, k -> new HashSet<>());
restriction.add(bestSolution.getLabel(v2));
break;
}
}
}
}
}
}
return closestVertexToV1;
}
private double getDistance(V v1, V v2)
{
E e = graph.getEdge(v1, v2);
if (e == null) {
return Double.MAX_VALUE;
}
return graph.getEdgeWeight(e);
}
}