org.jheaps.tree.CostlessMeldPairingHeap Maven / Gradle / Ivy
/*
* (C) Copyright 2014-2016, by Dimitrios Michail
*
* JHeaps Library
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jheaps.tree;
import java.io.Serializable;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Comparator;
import java.util.NoSuchElementException;
import org.jheaps.AddressableHeap;
import org.jheaps.MergeableAddressableHeap;
import org.jheaps.annotations.ConstantTime;
import org.jheaps.annotations.LogLogTime;
import org.jheaps.annotations.LogarithmicTime;
/**
* The costless meld variant of the pairing heaps. The heap is sorted according
* to the {@linkplain Comparable natural ordering} of its keys, or by a
* {@link Comparator} provided at heap creation time, depending on which
* constructor is used.
*
*
* This implementation provides amortized O(1) time for {@code findMin} and
* {@code insert}, amortized O(log(n)) for {@code deleteMin} and {@code delete}
* and amortized O(loglog(n)) for the {@code decreaseKey} operation. The
* operation {@code meld} takes amortized zero time.
*
*
* This variant of the pairing heap is due to Amr Elmasry, described in detail
* in the following
* paper:
*
* - Amr Elmasry, Pairing Heaps with Costless Meld, In Proceedings of the 18th
* Annual European Symposium on Algorithms (ESA 2010), 183--193, 2010.
*
*
*
* All the above bounds, however, assume that the user does not perform
* cascading melds on heaps such as:
*
*
* d.meld(e);
* c.meld(d);
* b.meld(c);
* a.meld(b);
*
*
* The above scenario, although efficiently supported by using union-find with
* path compression, invalidates the claimed bounds.
*
*
* Note that the ordering maintained by a pairing heap, like any heap, and
* whether or not an explicit comparator is provided, must be consistent
* with {@code equals} if this heap is to correctly implement the
* {@code AddressableHeap} interface. (See {@code Comparable} or
* {@code Comparator} for a precise definition of consistent with
* equals.) This is so because the {@code AddressableHeap} interface is
* defined in terms of the {@code equals} operation, but a pairing heap performs
* all key comparisons using its {@code compareTo} (or {@code compare}) method,
* so two keys that are deemed equal by this method are, from the standpoint of
* the pairing heap, equal. The behavior of a heap is well-defined even
* if its ordering is inconsistent with {@code equals}; it just fails to obey
* the general contract of the {@code AddressableHeap} interface.
*
*
* Note that this implementation is not synchronized. If
* multiple threads access a heap concurrently, and at least one of the threads
* modifies the heap structurally, it must be synchronized externally.
* (A structural modification is any operation that adds or deletes one or more
* elements or changing the key of some element.) This is typically accomplished
* by synchronizing on some object that naturally encapsulates the heap.
*
* @param
* the type of keys maintained by this heap
* @param
* the type of values maintained by this heap
*
* @author Dimitrios Michail
*
* @see PairingHeap
* @see FibonacciHeap
*/
public class CostlessMeldPairingHeap implements MergeableAddressableHeap, Serializable {
private final static long serialVersionUID = 1;
/**
* Maximum length of decrease pool for long type.
*/
private final static int DEFAULT_DECREASE_POOL_SIZE = 64 + 1;
/**
* The comparator used to maintain order in this heap, or null if it uses
* the natural ordering of its keys.
*
* @serial
*/
private final Comparator super K> comparator;
/**
* The root of the pairing heap
*/
private Node root;
/**
* Size of the pairing heap
*/
private long size;
/**
* The decrease pool
*/
private Node[] decreasePool;
/**
* How many elements are valid in the decrease pool
*/
private byte decreasePoolSize;
/**
* Index of node with minimum key in the decrease pool. Not existent if
* {@literal decreasePoolMin >= decreasePoolSize}.
*/
private byte decreasePoolMinPos;
/**
* Comparator for nodes in the decrease pool. Initialized lazily and used
* when sorting entries in the decrease pool.
*/
private transient Comparator> decreasePoolComparator;
/**
* Used to reference the current heap or some other pairing heap in case of
* melding, so that handles remain valid even after a meld, without having
* to iterate over them.
*
* In order to avoid maintaining a full-fledged union-find data structure,
* we disallow a heap to be used in melding more than once. We use however,
* path-compression in case of cascading melds, that it, a handle moves from
* one heap to another and then another.
*/
private CostlessMeldPairingHeap other;
/**
* Constructs a new, empty heap, using the natural ordering of its keys. All
* keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*/
@ConstantTime
public CostlessMeldPairingHeap() {
this(null);
}
/**
* Constructs a new, empty heap, ordered according to the given comparator.
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
*/
@ConstantTime
@SuppressWarnings("unchecked")
public CostlessMeldPairingHeap(Comparator super K> comparator) {
this.decreasePool = (Node[]) Array.newInstance(Node.class, DEFAULT_DECREASE_POOL_SIZE);
this.decreasePoolSize = 0;
this.decreasePoolMinPos = 0;
this.comparator = comparator;
this.decreasePoolComparator = null;
this.other = this;
}
/**
* {@inheritDoc}
*
* @throws IllegalStateException
* if the heap has already been used in the right hand side of a
* meld
*/
@Override
@LogarithmicTime(amortized = true)
public AddressableHeap.Handle insert(K key, V value) {
if (other != this) {
throw new IllegalStateException("A heap cannot be used after a meld");
}
if (key == null) {
throw new NullPointerException("Null keys not permitted");
}
Node n = new Node(this, key, value);
if (comparator == null) {
root = link(root, n);
} else {
root = linkWithComparator(root, n);
}
size++;
return n;
}
/**
* {@inheritDoc}
*
* @throws IllegalStateException
* if the heap has already been used in the right hand side of a
* meld
*/
@Override
@LogarithmicTime(amortized = true)
public AddressableHeap.Handle insert(K key) {
return insert(key, null);
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
@ConstantTime
public AddressableHeap.Handle findMin() {
if (size == 0) {
throw new NoSuchElementException();
} else if (decreasePoolMinPos >= decreasePoolSize) {
return root;
} else {
Node poolMin = decreasePool[decreasePoolMinPos];
int c;
if (comparator == null) {
c = ((Comparable super K>) root.key).compareTo(poolMin.key);
} else {
c = comparator.compare(root.key, poolMin.key);
}
if (c <= 0) {
return root;
} else {
return poolMin;
}
}
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public boolean isEmpty() {
return size == 0;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public long size() {
return size;
}
/**
* {@inheritDoc}
*/
@Override
public Comparator super K> comparator() {
return comparator;
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
@ConstantTime
public void clear() {
root = null;
size = 0;
decreasePool = (Node[]) Array.newInstance(Node.class, DEFAULT_DECREASE_POOL_SIZE);
decreasePoolSize = 0;
decreasePoolMinPos = 0;
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
@LogarithmicTime(amortized = true)
public AddressableHeap.Handle deleteMin() {
if (size == 0) {
throw new NoSuchElementException();
}
Node min;
if (decreasePoolMinPos >= decreasePoolSize) {
// decrease pool empty
min = root;
// cut all children, and combine them
root = combine(cutChildren(root));
} else {
Node poolMin = decreasePool[decreasePoolMinPos];
int c;
if (comparator == null) {
c = ((Comparable super K>) root.key).compareTo(poolMin.key);
} else {
c = comparator.compare(root.key, poolMin.key);
}
if (c <= 0) {
// root is smaller
min = root;
// cut children, combine
Node childrenTree = combine(cutChildren(root));
root = null;
/*
* Append to decrease pool without updating minimum as we are
* going to consolidate anyway
*/
if (childrenTree != null) {
addPool(childrenTree, false);
}
consolidate();
} else {
// minimum in pool is smaller
min = poolMin;
// cut children, combine
Node childrenTree = combine(cutChildren(poolMin));
if (childrenTree != null) {
// add to location of previous minimum and consolidate
decreasePool[decreasePoolMinPos] = childrenTree;
childrenTree.poolIndex = decreasePoolMinPos;
} else {
decreasePool[decreasePoolMinPos] = decreasePool[decreasePoolSize - 1];
decreasePool[decreasePoolMinPos].poolIndex = decreasePoolMinPos;
decreasePool[decreasePoolSize - 1] = null;
decreasePoolSize--;
}
poolMin.poolIndex = Node.NO_INDEX;
consolidate();
}
}
size--;
return min;
}
/**
* {@inheritDoc}
*
* This operation takes amortized zero cost.
*/
@Override
@ConstantTime(amortized = true)
public void meld(MergeableAddressableHeap other) {
CostlessMeldPairingHeap h = (CostlessMeldPairingHeap) other;
// check same comparator
if (comparator != null) {
if (h.comparator == null || !h.comparator.equals(comparator)) {
throw new IllegalArgumentException("Cannot meld heaps using different comparators!");
}
} else if (h.comparator != null) {
throw new IllegalArgumentException("Cannot meld heaps using different comparators!");
}
if (h.other != h) {
throw new IllegalStateException("A heap cannot be used after a meld.");
}
// meld
if (size < h.size) {
consolidate();
if (comparator == null) {
root = link(h.root, root);
} else {
root = linkWithComparator(h.root, root);
}
decreasePoolSize = h.decreasePoolSize;
h.decreasePoolSize = 0;
decreasePoolMinPos = h.decreasePoolMinPos;
h.decreasePoolMinPos = 0;
Node[] tmp = decreasePool;
decreasePool = h.decreasePool;
h.decreasePool = tmp;
} else {
h.consolidate();
if (comparator == null) {
root = link(h.root, root);
} else {
root = linkWithComparator(h.root, root);
}
}
size += h.size;
h.root = null;
h.size = 0;
// take ownership
h.other = this;
}
// node
static class Node implements AddressableHeap.Handle, Serializable {
private final static long serialVersionUID = 1;
static final byte NO_INDEX = -1;
/*
* We maintain explicitly the belonging heap, instead of using an inner
* class due to possible cascading melding.
*/
CostlessMeldPairingHeap heap;
K key;
V value;
Node o_c; // older child
Node y_s; // younger sibling
Node o_s; // older sibling or parent
byte poolIndex; // position in decrease pool
Node(CostlessMeldPairingHeap heap, K key, V value) {
this.heap = heap;
this.key = key;
this.value = value;
this.o_c = null;
this.y_s = null;
this.o_s = null;
this.poolIndex = NO_INDEX;
}
/**
* {@inheritDoc}
*/
@Override
public K getKey() {
return key;
}
/**
* {@inheritDoc}
*/
@Override
public V getValue() {
return value;
}
/**
* {@inheritDoc}
*/
@Override
public void setValue(V value) {
this.value = value;
}
/**
* {@inheritDoc}
*/
@Override
@LogLogTime(amortized = true)
public void delete() {
getOwner().delete(this);
}
/**
* {@inheritDoc}
*/
@Override
@LogLogTime(amortized = true)
public void decreaseKey(K newKey) {
getOwner().decreaseKey(this, newKey);
}
/*
* Get the owner heap of the handle. This is union-find with
* path-compression between heaps.
*/
CostlessMeldPairingHeap getOwner() {
if (heap.other != heap) {
// find root
CostlessMeldPairingHeap root = heap;
while (root != root.other) {
root = root.other;
}
// path-compression
CostlessMeldPairingHeap cur = heap;
while (cur.other != root) {
CostlessMeldPairingHeap next = cur.other;
cur.other = root;
cur = next;
}
heap = root;
}
return heap;
}
}
/*
* Decrease the key of a node.
*/
@SuppressWarnings("unchecked")
private void decreaseKey(Node n, K newKey) {
int c;
if (comparator == null) {
c = ((Comparable super K>) newKey).compareTo(n.key);
} else {
c = comparator.compare(newKey, n.key);
}
if (c > 0) {
throw new IllegalArgumentException("Keys can only be decreased!");
}
n.key = newKey;
if (c == 0 || root == n) {
// root or no change in key
return;
} else if (n.o_s == null && n.poolIndex == Node.NO_INDEX) {
// no root, no parent and no pool index
throw new IllegalArgumentException("Invalid handle!");
} else if (n.o_s == null) {
// no parent and not root, so inside pool
Node poolMin = decreasePool[decreasePoolMinPos];
if (comparator == null) {
c = ((Comparable super K>) newKey).compareTo(poolMin.key);
} else {
c = comparator.compare(newKey, poolMin.key);
}
if (c < 0) {
decreasePoolMinPos = n.poolIndex;
}
return;
} else {
// node has a parent
Node oldestChild = cutOldestChild(n);
if (oldestChild != null) {
linkInPlace(oldestChild, n);
} else {
cutFromParent(n);
}
// append node (minus oldest child) to decrease pool
addPool(n, true);
// if decrease pool has >= ceil(logn) trees, consolidate
double sizeAsDouble = size;
if (decreasePoolSize >= Math.getExponent(sizeAsDouble) + 1) {
consolidate();
}
}
}
/**
* Delete a node.
*
* @param n
* the node
*/
private void delete(Node n) {
if (n != root && n.o_s == null && n.poolIndex == Node.NO_INDEX) {
// no root, no parent and no pool index
throw new IllegalArgumentException("Invalid handle!");
}
// node has a parent
if (n.o_s != null) {
// cut oldest child
Node oldestChild = cutOldestChild(n);
if (oldestChild != null) {
linkInPlace(oldestChild, n);
} else {
cutFromParent(n);
}
}
// node has no parent
// cut children
Node childrenTree = combine(cutChildren(n));
boolean checkConsolidate = false;
if (childrenTree != null) {
checkConsolidate = true;
addPool(childrenTree, true);
}
size--;
if (n == root) {
root = null;
consolidate();
checkConsolidate = false;
} else if (n.poolIndex != Node.NO_INDEX) {
byte curIndex = n.poolIndex;
decreasePool[curIndex] = decreasePool[decreasePoolSize - 1];
decreasePool[curIndex].poolIndex = curIndex;
decreasePool[decreasePoolSize - 1] = null;
decreasePoolSize--;
n.poolIndex = Node.NO_INDEX;
if (curIndex == decreasePoolMinPos) {
// in decrease pool, and also the minimum
consolidate();
checkConsolidate = false;
} else {
// in decrease pool, and not the minimum
if (decreasePoolMinPos == decreasePoolSize) {
decreasePoolMinPos = curIndex;
}
checkConsolidate = true;
}
}
// if decrease pool has >= ceil(logn) trees, consolidate
if (checkConsolidate) {
double sizeAsDouble = size;
if (decreasePoolSize >= Math.getExponent(sizeAsDouble) + 1) {
consolidate();
}
}
}
/*
* Consolidate. Combine the trees of the decrease pool in one tree by
* sorting the values of the roots of these trees, and linking the trees in
* this order such that their roots form a path of nodes in the combined
* tree (make every root the leftmost child of the root with the next
* smaller value). Join this combined tree with the main tree.
*/
private void consolidate() {
if (decreasePoolSize == 0) {
return;
}
// lazily initialize comparator
if (decreasePoolComparator == null) {
if (comparator == null) {
decreasePoolComparator = new Comparator>() {
@Override
@SuppressWarnings("unchecked")
public int compare(Node o1, Node o2) {
return ((Comparable super K>) o1.key).compareTo(o2.key);
}
};
} else {
decreasePoolComparator = new Comparator>() {
@Override
public int compare(Node o1, Node o2) {
return CostlessMeldPairingHeap.this.comparator.compare(o1.key, o2.key);
}
};
}
}
// sort
Arrays.sort(decreasePool, 0, decreasePoolSize, decreasePoolComparator);
int i = decreasePoolSize - 1;
Node s = decreasePool[i];
s.poolIndex = Node.NO_INDEX;
while (i > 0) {
Node f = decreasePool[i - 1];
f.poolIndex = Node.NO_INDEX;
decreasePool[i] = null;
// link (no comparison, due to sort)
s.y_s = f.o_c;
s.o_s = f;
if (f.o_c != null) {
f.o_c.o_s = s;
}
f.o_c = s;
// advance
s = f;
i--;
}
// empty decrease pool
decreasePool[0] = null;
decreasePoolSize = 0;
decreasePoolMinPos = 0;
// merge tree with root
if (comparator == null) {
root = link(root, s);
} else {
root = linkWithComparator(root, s);
}
}
/**
* Append to decrease pool.
*/
@SuppressWarnings("unchecked")
private void addPool(Node n, boolean updateMinimum) {
decreasePool[decreasePoolSize] = n;
n.poolIndex = decreasePoolSize;
decreasePoolSize++;
if (updateMinimum && decreasePoolSize > 1) {
Node poolMin = decreasePool[decreasePoolMinPos];
int c;
if (comparator == null) {
c = ((Comparable super K>) n.key).compareTo(poolMin.key);
} else {
c = comparator.compare(n.key, poolMin.key);
}
if (c < 0) {
decreasePoolMinPos = n.poolIndex;
}
}
}
/**
* Two pass pair and compute root.
*/
private Node combine(Node l) {
if (l == null) {
return null;
}
assert l.o_s == null;
// left-right pass
Node pairs = null;
Node it = l, p_it;
if (comparator == null) { // no comparator
while (it != null) {
p_it = it;
it = it.y_s;
if (it == null) {
// append last node to pair list
p_it.y_s = pairs;
p_it.o_s = null;
pairs = p_it;
} else {
Node n_it = it.y_s;
// disconnect both
p_it.y_s = null;
p_it.o_s = null;
it.y_s = null;
it.o_s = null;
// link trees
p_it = link(p_it, it);
// append to pair list
p_it.y_s = pairs;
pairs = p_it;
// advance
it = n_it;
}
}
} else {
while (it != null) {
p_it = it;
it = it.y_s;
if (it == null) {
// append last node to pair list
p_it.y_s = pairs;
p_it.o_s = null;
pairs = p_it;
} else {
Node n_it = it.y_s;
// disconnect both
p_it.y_s = null;
p_it.o_s = null;
it.y_s = null;
it.o_s = null;
// link trees
p_it = linkWithComparator(p_it, it);
// append to pair list
p_it.y_s = pairs;
pairs = p_it;
// advance
it = n_it;
}
}
}
// second pass (reverse order - due to add first)
it = pairs;
Node f = null;
if (comparator == null) {
while (it != null) {
Node nextIt = it.y_s;
it.y_s = null;
f = link(f, it);
it = nextIt;
}
} else {
while (it != null) {
Node nextIt = it.y_s;
it.y_s = null;
f = linkWithComparator(f, it);
it = nextIt;
}
}
return f;
}
/**
* Cut the children of a node and return the list.
*
* @param n
* the node
* @return the first node in the children list
*/
private Node cutChildren(Node n) {
Node child = n.o_c;
n.o_c = null;
if (child != null) {
child.o_s = null;
}
return child;
}
/**
* Cut the oldest child of a node.
*
* @param n
* the node
* @return the oldest child of a node or null
*/
private Node cutOldestChild(Node n) {
Node oldestChild = n.o_c;
if (oldestChild != null) {
if (oldestChild.y_s != null) {
oldestChild.y_s.o_s = n;
}
n.o_c = oldestChild.y_s;
oldestChild.y_s = null;
oldestChild.o_s = null;
}
return oldestChild;
}
/**
* Cut a node from its parent.
*
* @param n
* the node
*/
private void cutFromParent(Node n) {
if (n.o_s != null) {
if (n.y_s != null) {
n.y_s.o_s = n.o_s;
}
if (n.o_s.o_c == n) { // I am the oldest :(
n.o_s.o_c = n.y_s;
} else { // I have an older sibling!
n.o_s.y_s = n.y_s;
}
n.y_s = null;
n.o_s = null;
}
}
/**
* Put an orphan node into the position of another node. The other node
* becomes an orphan.
*
* @param orphan
* the orphan node
* @param n
* the node which will become an orphan
*/
private void linkInPlace(Node orphan, Node n) {
// link orphan at node's position
orphan.y_s = n.y_s;
if (n.y_s != null) {
n.y_s.o_s = orphan;
}
orphan.o_s = n.o_s;
if (n.o_s != null) {
if (n.o_s.o_c == n) { // node is the oldest :(
n.o_s.o_c = orphan;
} else { // node has an older sibling!
n.o_s.y_s = orphan;
}
}
n.o_s = null;
n.y_s = null;
}
@SuppressWarnings("unchecked")
private Node link(Node f, Node s) {
if (s == null) {
return f;
} else if (f == null) {
return s;
} else if (((Comparable super K>) f.key).compareTo(s.key) <= 0) {
s.y_s = f.o_c;
s.o_s = f;
if (f.o_c != null) {
f.o_c.o_s = s;
}
f.o_c = s;
return f;
} else {
return link(s, f);
}
}
private Node linkWithComparator(Node f, Node s) {
if (s == null) {
return f;
} else if (f == null) {
return s;
} else if (comparator.compare(f.key, s.key) <= 0) {
s.y_s = f.o_c;
s.o_s = f;
if (f.o_c != null) {
f.o_c.o_s = s;
}
f.o_c = s;
return f;
} else {
return linkWithComparator(s, f);
}
}
}