All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.mxgraph.analysis.mxFibonacciHeap Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/**
 * Copyright (c) 2007-2017, Gaudenz Alder
 * Copyright (c) 2007-2017, JGraph Ltd
 */
package com.mxgraph.analysis;

import java.util.Hashtable;
import java.util.Map;

/**
 * This class implements a priority queue.
 */
public class mxFibonacciHeap
{

	/**
	 * Maps from elements to nodes
	 */
	protected Map nodes = new Hashtable();

	/**
	 * 
	 */
	protected Node min;

	/**
	 * 
	 */
	protected int size;

	/**
	 * Returns the node that represents element.
	 * @param element the element whose node to find
	 * @param create whether to create 
	 * @return the node representing the specified element
	 */
	public Node getNode(Object element, boolean create)
	{
		Node node = nodes.get(element);

		if (node == null && create)
		{
			node = new Node(element, Double.MAX_VALUE);
			nodes.put(element, node);
			insert(node, node.getKey());
		}
		return node;
	}

	/**
	 * Returns true if the queue is empty.
	 * @return whether the queue is empty
	 */
	public boolean isEmpty()
	{
		return min == null;
	}

	/**
	 * Decreases the key value for a heap node, given the new value to take on.
	 * The structure of the heap may be changed and will not be consolidated.
	 * 
	 * 

* Running time: O(1) amortized *

* * @param x Node whose value should be decreased. * @param k New key value for node x. * * @exception IllegalArgumentException * Thrown if k is larger than x.key value. */ public void decreaseKey(Node x, double k) { if (k > x.key) { throw new IllegalArgumentException( "decreaseKey() got larger key value"); } x.key = k; Node y = x.parent; if ((y != null) && (x.key < y.key)) { cut(x, y); cascadingCut(y); } if (min == null || x.key < min.key) { min = x; } } /** * Deletes a node from the heap given the reference to the node. The trees * in the heap will be consolidated, if necessary. This operation may fail * to remove the correct element if there are nodes with key value * -Infinity. * *

* Running time: O(log n) amortized *

* * @param x The node to remove from the heap. */ public void delete(Node x) { // make x as small as possible decreaseKey(x, Double.NEGATIVE_INFINITY); // remove the smallest, which decreases n also removeMin(); } /** * Inserts a new data element into the heap. No heap consolidation is * performed at this time, the new node is simply inserted into the root * list of this heap. * *

* Running time: O(1) actual *

* * @param node * new node to insert into heap * @param key * key value associated with data object */ public void insert(Node node, double key) { node.key = key; // concatenate node into min list if (min != null) { node.left = min; node.right = min.right; min.right = node; node.right.left = node; if (key < min.key) { min = node; } } else { min = node; } size++; } /** * Returns the smallest element in the heap. This smallest element is the * one with the minimum key value. * *

* Running time: O(1) actual *

* * @return Returns the heap node with the smallest key. */ public Node min() { return min; } /** * Removes the smallest element from the heap. This will cause the trees in * the heap to be consolidated, if necessary. * Does not remove the data node so that the current key remains stored. * *

* Running time: O(log n) amortized *

* * @return Returns the node with the smallest key. */ public Node removeMin() { Node z = min; if (z != null) { int numKids = z.degree; Node x = z.child; Node tempRight; // for each child of z do... while (numKids > 0) { tempRight = x.right; // remove x from child list x.left.right = x.right; x.right.left = x.left; // add x to root list of heap x.left = min; x.right = min.right; min.right = x; x.right.left = x; // set parent[x] to null x.parent = null; x = tempRight; numKids--; } // remove z from root list of heap z.left.right = z.right; z.right.left = z.left; if (z == z.right) { min = null; } else { min = z.right; consolidate(); } // decrement size of heap size--; } return z; } /** * Returns the size of the heap which is measured in the number of elements * contained in the heap. * *

* Running time: O(1) actual *

* * @return Returns the number of elements in the heap. */ public int size() { return size; } /** * Joins two Fibonacci heaps into a new one. No heap consolidation is * performed at this time. The two root lists are simply joined together. * *

* Running time: O(1) actual *

* * @param h1 The first heap. * @param h2 The second heap. * @return Returns a new heap containing h1 and h2. */ public static mxFibonacciHeap union(mxFibonacciHeap h1, mxFibonacciHeap h2) { mxFibonacciHeap h = new mxFibonacciHeap(); if ((h1 != null) && (h2 != null)) { h.min = h1.min; if (h.min != null) { if (h2.min != null) { h.min.right.left = h2.min.left; h2.min.left.right = h.min.right; h.min.right = h2.min; h2.min.left = h.min; if (h2.min.key < h1.min.key) { h.min = h2.min; } } } else { h.min = h2.min; } h.size = h1.size + h2.size; } return h; } /** * Performs a cascading cut operation. This cuts y from its parent and then * does the same for its parent, and so on up the tree. * *

* Running time: O(log n); O(1) excluding the recursion *

* * @param y The node to perform cascading cut on. */ protected void cascadingCut(Node y) { Node z = y.parent; // if there's a parent... if (z != null) { // if y is unmarked, set it marked if (!y.mark) { y.mark = true; } else { // it's marked, cut it from parent cut(y, z); // cut its parent as well cascadingCut(z); } } } /** * Consolidates the trees in the heap by joining trees of equal degree until * there are no more trees of equal degree in the root list. * *

* Running time: O(log n) amortized *

*/ protected void consolidate() { int arraySize = size + 1; Node[] array = new Node[arraySize]; // Initialize degree array for (int i = 0; i < arraySize; i++) { array[i] = null; } // Find the number of root nodes. int numRoots = 0; Node x = min; if (x != null) { numRoots++; x = x.right; while (x != min) { numRoots++; x = x.right; } } // For each node in root list do... while (numRoots > 0) { // Access this node's degree.. int d = x.degree; Node next = x.right; // ..and see if there's another of the same degree. while (array[d] != null) { // There is, make one of the nodes a child of the other. Node y = array[d]; // Do this based on the key value. if (x.key > y.key) { Node temp = y; y = x; x = temp; } // Node y disappears from root list. link(y, x); // We've handled this degree, go to next one. array[d] = null; d++; } // Save this node for later when we might encounter another // of the same degree. array[d] = x; // Move forward through list. x = next; numRoots--; } // Set min to null (effectively losing the root list) and // reconstruct the root list from the array entries in array[]. min = null; for (int i = 0; i < arraySize; i++) { if (array[i] != null) { // We've got a live one, add it to root list. if (min != null) { // First remove node from root list. array[i].left.right = array[i].right; array[i].right.left = array[i].left; // Now add to root list, again. array[i].left = min; array[i].right = min.right; min.right = array[i]; array[i].right.left = array[i]; // Check if this is a new min. if (array[i].key < min.key) { min = array[i]; } } else { min = array[i]; } } } } /** * The reverse of the link operation: removes x from the child list of y. * This method assumes that min is non-null. * *

* Running time: O(1) *

* * @param x The child of y to be removed from y's child list. * @param y The parent of x about to lose a child. */ protected void cut(Node x, Node y) { // remove x from childlist of y and decrement degree[y] x.left.right = x.right; x.right.left = x.left; y.degree--; // reset y.child if necessary if (y.child == x) { y.child = x.right; } if (y.degree == 0) { y.child = null; } // add x to root list of heap x.left = min; x.right = min.right; min.right = x; x.right.left = x; // set parent[x] to nil x.parent = null; // set mark[x] to false x.mark = false; } /** * Make node y a child of node x. * *

* Running time: O(1) actual *

* * @param y The node to become child. * @param x The node to become parent. */ protected void link(Node y, Node x) { // remove y from root list of heap y.left.right = y.right; y.right.left = y.left; // make y a child of x y.parent = x; if (x.child == null) { x.child = y; y.right = y; y.left = y; } else { y.left = x.child; y.right = x.child.right; x.child.right = y; y.right.left = y; } // increase degree[x] x.degree++; // set mark[y] false y.mark = false; } /** * Implements a node of the Fibonacci heap. It holds the information * necessary for maintaining the structure of the heap. It also holds the * reference to the key value (which is used to determine the heap * structure). Additional Node data should be stored in a subclass. */ public static class Node { Object userObject; /** * first child node */ Node child; /** * left sibling node */ Node left; /** * parent node */ Node parent; /** * right sibling node */ Node right; /** * true if this node has had a child removed since this node was added * to its parent */ boolean mark; /** * key value for this node */ double key; /** * number of children of this node (does not count grandchildren) */ int degree; /** * Default constructor. Initializes the right and left pointers, making * this a circular doubly-linked list. * * @param key The initial key for node. */ public Node(Object userObject, double key) { this.userObject = userObject; right = this; left = this; this.key = key; } /** * Obtain the key for this node. * * @return the key */ public final double getKey() { return key; } /** * @return Returns the userObject. */ public Object getUserObject() { return userObject; } /** * @param userObject The userObject to set. */ public void setUserObject(Object userObject) { this.userObject = userObject; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy