All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.mxgraph.analysis.mxGraphAnalysis Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * Copyright (c) 2001-2005, Gaudenz Alder
 * 
 * All rights reserved. 
 * 
 * This file is licensed under the JGraph software license, a copy of which
 * will have been provided to you in the file LICENSE at the root of your
 * installation directory. If you are unable to locate this file please
 * contact JGraph sales for another copy.
 */
package com.mxgraph.analysis;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Hashtable;
import java.util.List;

import com.mxgraph.view.mxCellState;
import com.mxgraph.view.mxGraph;
import com.mxgraph.view.mxGraphView;

/**
 * A singleton class that provides algorithms for graphs. Assume these
 * variables for the following examples:
* * mxICostFunction cf = mxDistanceCostFunction(); * Object[] v = graph.getChildVertices(graph.getDefaultParent()); * Object[] e = graph.getChildEdges(graph.getDefaultParent()); * mxGraphAnalysis mga = mxGraphAnalysis.getInstance(); * * *

Shortest Path (Dijkstra)

* * For example, to find the shortest path between the first and the second * selected cell in a graph use the following code:
*
* Object[] path = mga.getShortestPath(graph, from, to, cf, v.length, true); * *

Minimum Spanning Tree

* * This algorithm finds the set of edges with the minimal length that connect * all vertices. This algorithm can be used as follows: *
Prim
* mga.getMinimumSpanningTree(graph, v, cf, true)) *
Kruskal
* mga.getMinimumSpanningTree(graph, v, e, cf)) * *

Connection Components

* * The union find may be used as follows to determine whether two cells are * connected: boolean connected = uf.differ(vertex1, vertex2). * * @see mxICostFunction */ public class mxGraphAnalysis { /** * Holds the shared instance of this class. */ protected static mxGraphAnalysis instance = new mxGraphAnalysis(); /** * */ protected mxGraphAnalysis() { // empty } /** * @return Returns the sharedInstance. */ public static mxGraphAnalysis getInstance() { return instance; } /** * Sets the shared instance of this class. * * @param instance The instance to set. */ public static void setInstance(mxGraphAnalysis instance) { mxGraphAnalysis.instance = instance; } /** * Returns the shortest path between two cells or their descendants * represented as an array of edges in order of traversal.
* This implementation is based on the Dijkstra algorithm. * * @param graph The object that defines the graph structure * @param from The source cell. * @param to The target cell (aka sink). * @param cf The cost function that defines the edge length. * @param steps The maximum number of edges to traverse. * @param directed If edge directions should be taken into account. * @return Returns the shortest path as an alternating array of vertices * and edges, starting with from and ending with * to. * * @see #createPriorityQueue() */ public Object[] getShortestPath(mxGraph graph, Object from, Object to, mxICostFunction cf, int steps, boolean directed) { // Sets up a pqueue and a hashtable to store the predecessor for each // cell in tha graph traversal. The pqueue is initialized // with the from element at prio 0. mxGraphView view = graph.getView(); mxFibonacciHeap q = createPriorityQueue(); Hashtable pred = new Hashtable(); q.decreaseKey(q.getNode(from, true), 0); // Inserts automatically // The main loop of the dijkstra algorithm is based on the pqueue being // updated with the actual shortest distance to the source vertex. for (int j = 0; j < steps; j++) { mxFibonacciHeap.Node node = q.removeMin(); double prio = node.getKey(); Object obj = node.getUserObject(); // Exits the loop if the target node or vertex has been reached if (obj == to) { break; } // Gets all outgoing edges of the closest cell to the source Object[] e = (directed) ? graph.getOutgoingEdges(obj) : graph .getConnections(obj); if (e != null) { for (int i = 0; i < e.length; i++) { Object[] opp = graph.getOpposites(new Object[] { e[i] }, obj); if (opp != null && opp.length > 0) { Object neighbour = opp[0]; // Updates the priority in the pqueue for the opposite node // to be the distance of this step plus the cost to // traverese the edge to the neighbour. Note that the // priority queue will make sure that in the next step the // node with the smallest prio will be traversed. if (neighbour != null && neighbour != obj && neighbour != from) { double newPrio = prio + ((cf != null) ? cf.getCost(view .getState(e[i])) : 1); node = q.getNode(neighbour, true); double oldPrio = node.getKey(); if (newPrio < oldPrio) { pred.put(neighbour, e[i]); q.decreaseKey(node, newPrio); } } } } } if (q.isEmpty()) { break; } } // Constructs a path array by walking backwards through the predessecor // map and filling up a list of edges, which is subsequently returned. ArrayList list = new ArrayList(2 * steps); Object obj = to; Object edge = pred.get(obj); if (edge != null) { list.add(obj); while (edge != null) { list.add(0, edge); mxCellState state = view.getState(edge); Object source = (state != null) ? state .getVisibleTerminal(true) : view.getVisibleTerminal( edge, true); boolean isSource = source == obj; obj = (state != null) ? state.getVisibleTerminal(!isSource) : view.getVisibleTerminal(edge, !isSource); list.add(0, obj); edge = pred.get(obj); } } return list.toArray(); } /** * Returns the minimum spanning tree (MST) for the graph defined by G=(E,V). * The MST is defined as the set of all vertices with minimal lengths that * forms no cycles in G.
* This implementation is based on the algorihm by Prim-Jarnik. It uses * O(|E|+|V|log|V|) time when used with a Fibonacci heap and a graph whith a * double linked-list datastructure, as is the case with the default * implementation. * * @param graph * the object that describes the graph * @param v * the vertices of the graph * @param cf * the cost function that defines the edge length * * @return Returns the MST as an array of edges * * @see #createPriorityQueue() */ public Object[] getMinimumSpanningTree(mxGraph graph, Object[] v, mxICostFunction cf, boolean directed) { ArrayList mst = new ArrayList(v.length); // Sets up a pqueue and a hashtable to store the predecessor for each // cell in tha graph traversal. The pqueue is initialized // with the from element at prio 0. mxFibonacciHeap q = createPriorityQueue(); Hashtable pred = new Hashtable(); Object u = v[0]; q.decreaseKey(q.getNode(u, true), 0); for (int i = 1; i < v.length; i++) { q.getNode(v[i], true); } // The main loop of the dijkstra algorithm is based on the pqueue being // updated with the actual shortest distance to the source vertex. while (!q.isEmpty()) { mxFibonacciHeap.Node node = q.removeMin(); u = node.getUserObject(); Object edge = pred.get(u); if (edge != null) { mst.add(edge); } // Gets all outgoing edges of the closest cell to the source Object[] e = (directed) ? graph.getOutgoingEdges(u) : graph .getConnections(u); Object[] opp = graph.getOpposites(e, u); if (e != null) { for (int i = 0; i < e.length; i++) { Object neighbour = opp[i]; // Updates the priority in the pqueue for the opposite node // to be the distance of this step plus the cost to // traverese the edge to the neighbour. Note that the // priority queue will make sure that in the next step the // node with the smallest prio will be traversed. if (neighbour != null && neighbour != u) { node = q.getNode(neighbour, false); if (node != null) { double newPrio = cf.getCost(graph.getView() .getState(e[i])); double oldPrio = node.getKey(); if (newPrio < oldPrio) { pred.put(neighbour, e[i]); q.decreaseKey(node, newPrio); } } } } } } return mst.toArray(); } /** * Returns the minimum spanning tree (MST) for the graph defined by G=(E,V). * The MST is defined as the set of all vertices with minimal lenths that * forms no cycles in G.
* This implementation is based on the algorihm by Kruskal. It uses * O(|E|log|E|)=O(|E|log|V|) time for sorting the edges, O(|V|) create sets, * O(|E|) find and O(|V|) union calls on the union find structure, thus * yielding no more than O(|E|log|V|) steps. For a faster implementatin * * @see #getMinimumSpanningTree(mxGraph, Object[], mxICostFunction, * boolean) * * @param graph The object that contains the graph. * @param v The vertices of the graph. * @param e The edges of the graph. * @param cf The cost function that defines the edge length. * * @return Returns the MST as an array of edges. * * @see #createUnionFind(Object[]) */ public Object[] getMinimumSpanningTree(mxGraph graph, Object[] v, Object[] e, mxICostFunction cf) { // Sorts all edges according to their lengths, then creates a union // find structure for all vertices. Then walks through all edges by // increasing length and tries adding to the MST. Only edges are added // that do not form cycles in the graph, that is, where the source // and target are in different sets in the union find structure. // Whenever an edge is added to the MST, the two different sets are // unified. mxGraphView view = graph.getView(); mxUnionFind uf = createUnionFind(v); ArrayList result = new ArrayList(e.length); mxCellState[] edgeStates = sort(view.getCellStates(e), cf); for (int i = 0; i < edgeStates.length; i++) { Object source = edgeStates[i].getVisibleTerminal(true); Object target = edgeStates[i].getVisibleTerminal(false); mxUnionFind.Node setA = uf.find(uf.getNode(source)); mxUnionFind.Node setB = uf.find(uf.getNode(target)); if (setA == null || setB == null || setA != setB) { uf.union(setA, setB); result.add(edgeStates[i].getCell()); } } return result.toArray(); } /** * Returns a union find structure representing the connection components of * G=(E,V). * * @param graph The object that contains the graph. * @param v The vertices of the graph. * @param e The edges of the graph. * @return Returns the connection components in G=(E,V) * * @see #createUnionFind(Object[]) */ public mxUnionFind getConnectionComponents(mxGraph graph, Object[] v, Object[] e) { mxGraphView view = graph.getView(); mxUnionFind uf = createUnionFind(v); for (int i = 0; i < e.length; i++) { mxCellState state = view.getState(e[i]); Object source = (state != null) ? state.getVisibleTerminal(true) : view.getVisibleTerminal(e[i], true); Object target = (state != null) ? state.getVisibleTerminal(false) : view.getVisibleTerminal(e[i], false); uf.union(uf.find(uf.getNode(source)), uf.find(uf.getNode(target))); } return uf; } /** * Returns a sorted set for cells with respect to * cf. * * @param states * the cell states to sort * @param cf * the cost function that defines the order * * @return Returns an ordered set of cells wrt. * cf */ public mxCellState[] sort(mxCellState[] states, final mxICostFunction cf) { List result = Arrays.asList(states); Collections.sort(result, new Comparator() { /** * */ public int compare(mxCellState o1, mxCellState o2) { Double d1 = new Double(cf.getCost(o1)); Double d2 = new Double(cf.getCost(o2)); return d1.compareTo(d2); } }); return (mxCellState[]) result.toArray(); } /** * Returns the sum of all cost for cells with respect to * cf. * * @param states * the cell states to use for the sum * @param cf * the cost function that defines the costs * * @return Returns the sum of all cell cost */ public double sum(mxCellState[] states, mxICostFunction cf) { double sum = 0; for (int i = 0; i < states.length; i++) { sum += cf.getCost(states[i]); } return sum; } /** * Hook for subclassers to provide a custom union find structure. * * @param v * the array of all elements * * @return Returns a union find structure for v */ protected mxUnionFind createUnionFind(Object[] v) { return new mxUnionFind(v); } /** * Hook for subclassers to provide a custom fibonacci heap. */ protected mxFibonacciHeap createPriorityQueue() { return new mxFibonacciHeap(); } }