All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.mxgraph.layout.hierarchical.model.mxGraphHierarchyModel Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * Copyright (c) 2005-2012, JGraph Ltd
 */
package com.mxgraph.layout.hierarchical.model;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;

import com.mxgraph.layout.hierarchical.mxHierarchicalLayout;
import com.mxgraph.view.mxGraph;

/**
 * Internal model of a hierarchical graph. This model stores nodes and edges
 * equivalent to the real graph nodes and edges, but also stores the rank of the
 * cells, the order within the ranks and the new candidate locations of cells.
 * The internal model also reverses edge direction were appropriate , ignores
 * self-loop and groups parallels together under one edge object.
 */
public class mxGraphHierarchyModel
{
	/**
	 * Stores the largest rank number allocated
	 */
	public int maxRank;

	/**
	 * Map from graph vertices to internal model nodes
	 */
	protected Map vertexMapper = null;

	/**
	 * Map from graph edges to internal model edges
	 */
	protected Map edgeMapper = null;

	/**
	 * Mapping from rank number to actual rank
	 */
	public Map ranks = null;

	/**
	 * Store of roots of this hierarchy model, these are real graph cells, not
	 * internal cells
	 */
	public List roots;

	/**
	 * The parent cell whose children are being laid out
	 */
	public Object parent = null;

	/**
	 * Count of the number of times the ancestor dfs has been used
	 */
	protected int dfsCount = 0;

	/** High value to start source layering scan rank value from */
	private final int SOURCESCANSTARTRANK = 100000000;

	/**
	 * Creates an internal ordered graph model using the vertices passed in. If
	 * there are any, leftward edge need to be inverted in the internal model
	 * 
	 * @param layout
	 *            the enclosing layout object
	 * @param vertices
	 *            the vertices for this hierarchy
	 */
	public mxGraphHierarchyModel(mxHierarchicalLayout layout,
			Object[] vertices, List roots, Object parent)
	{
		mxGraph graph = layout.getGraph();
		this.roots = roots;
		this.parent = parent;

		if (vertices == null)
		{
			vertices = graph.getChildVertices(parent);
		}

		// map of cells to internal cell needed for second run through
		// to setup the sink of edges correctly. Guess size by number
		// of edges is roughly same as number of vertices.
		vertexMapper = new Hashtable(
				vertices.length);
		edgeMapper = new Hashtable(
				vertices.length);

		maxRank = SOURCESCANSTARTRANK;

		mxGraphHierarchyNode[] internalVertices = new mxGraphHierarchyNode[vertices.length];
		createInternalCells(layout, vertices, internalVertices);

		// Go through edges set their sink values. Also check the
		// ordering if and invert edges if necessary
		for (int i = 0; i < vertices.length; i++)
		{
			Collection edges = internalVertices[i].connectsAsSource;
			Iterator iter = edges.iterator();

			while (iter.hasNext())
			{
				mxGraphHierarchyEdge internalEdge = iter.next();
				Collection realEdges = internalEdge.edges;
				Iterator iter2 = realEdges.iterator();

				// Only need to process the first real edge, since
				// all the edges connect to the same other vertex
				if (iter2.hasNext())
				{
					Object realEdge = iter2.next();
					Object targetCell = graph.getView().getVisibleTerminal(
							realEdge, false);
					mxGraphHierarchyNode internalTargetCell = vertexMapper
							.get(targetCell);

					if (internalVertices[i] == internalTargetCell)
					{
						// The real edge is reversed relative to the internal edge
						targetCell = graph.getView().getVisibleTerminal(
								realEdge, true);
						internalTargetCell = vertexMapper.get(targetCell);
					}

					if (internalTargetCell != null
							&& internalVertices[i] != internalTargetCell)
					{
						internalEdge.target = internalTargetCell;

						if (internalTargetCell.connectsAsTarget.size() == 0)
						{
							internalTargetCell.connectsAsTarget = new LinkedHashSet(
									4);
						}

						internalTargetCell.connectsAsTarget.add(internalEdge);
					}
				}
			}

			// Use the temp variable in the internal nodes to mark this
			// internal vertex as having been visited.
			internalVertices[i].temp[0] = 1;
		}
	}
	
	/**
	 * Creates all edges in the internal model
	 * 
	 * @param layout
	 *            reference to the layout algorithm
	 * @param vertices
	 *            the vertices whom are to have an internal representation
	 *            created
	 * @param internalVertices
	 *            the blank internal vertices to have their information filled
	 *            in using the real vertices
	 */
	protected void createInternalCells(mxHierarchicalLayout layout,
			Object[] vertices, mxGraphHierarchyNode[] internalVertices)
	{
		mxGraph graph = layout.getGraph();

		// Create internal edges
		for (int i = 0; i < vertices.length; i++)
		{
			internalVertices[i] = new mxGraphHierarchyNode(vertices[i]);
			vertexMapper.put(vertices[i], internalVertices[i]);

			// If the layout is deterministic, order the cells
			Object[] conns = layout.getEdges(vertices[i]);
			List outgoingCells = Arrays.asList(graph.getOpposites(
					conns, vertices[i]));
			internalVertices[i].connectsAsSource = new LinkedHashSet(
					outgoingCells.size());

			// Create internal edges, but don't do any rank assignment yet
			// First use the information from the greedy cycle remover to
			// invert the leftward edges internally
			Iterator iter = outgoingCells.iterator();

			while (iter.hasNext())
			{
				// Don't add self-loops
				Object cell = iter.next();

				if (cell != vertices[i] && graph.getModel().isVertex(cell)
						&& !layout.isVertexIgnored(cell))
				{
					// We process all edge between this source and its targets
					// If there are edges going both ways, we need to collect
					// them all into one internal edges to avoid looping problems
					// later. We assume this direction (source -> target) is the 
					// natural direction if at least half the edges are going in
					// that direction.

					// The check below for edgeMapper.get(edges[0]) == null is
					// in case we've processed this the other way around
					// (target -> source) and the number of edges in each direction
					// are the same. All the graph edges will have been assigned to
					// an internal edge going the other way, so we don't want to 
					// process them again
					Object[] undirectEdges = graph.getEdgesBetween(vertices[i],
							cell, false);
					Object[] directedEdges = graph.getEdgesBetween(vertices[i],
							cell, true);

					if (undirectEdges != null
							&& undirectEdges.length > 0
							&& (edgeMapper.get(undirectEdges[0]) == null)
							&& (directedEdges.length * 2 >= undirectEdges.length))
					{

						ArrayList listEdges = new ArrayList(
								undirectEdges.length);

						for (int j = 0; j < undirectEdges.length; j++)
						{
							listEdges.add(undirectEdges[j]);
						}

						mxGraphHierarchyEdge internalEdge = new mxGraphHierarchyEdge(
								listEdges);
						Iterator iter2 = listEdges.iterator();

						while (iter2.hasNext())
						{
							Object edge = iter2.next();
							edgeMapper.put(edge, internalEdge);

							// Resets all point on the edge and disables the edge style
							// without deleting it from the cell style
							graph.resetEdge(edge);

							if (layout.isDisableEdgeStyle())
							{
								layout.setEdgeStyleEnabled(edge, false);
								layout.setOrthogonalEdge(edge, true);
							}
						}

						internalEdge.source = internalVertices[i];
						internalVertices[i].connectsAsSource.add(internalEdge);
					}
				}
			}

			// Ensure temp variable is cleared from any previous use
			internalVertices[i].temp[0] = 0;
		}
	}

	/**
	 * Basic determination of minimum layer ranking by working from from sources
	 * or sinks and working through each node in the relevant edge direction.
	 * Starting at the sinks is basically a longest path layering algorithm.
	 */
	public void initialRank()
	{
		Collection internalNodes = vertexMapper.values();
		LinkedList startNodes = new LinkedList();

		if (roots != null)
		{
			Iterator iter = roots.iterator();

			while (iter.hasNext())
			{
				mxGraphHierarchyNode internalNode = vertexMapper.get(iter
						.next());

				if (internalNode != null)
				{
					startNodes.add(internalNode);
				}
			}
		}

		Iterator iter = internalNodes.iterator();

		while (iter.hasNext())
		{
			mxGraphHierarchyNode internalNode = iter.next();
			// Mark the node as not having had a layer assigned
			internalNode.temp[0] = -1;
		}

		List startNodesCopy = new ArrayList(
				startNodes);

		while (!startNodes.isEmpty())
		{
			mxGraphHierarchyNode internalNode = startNodes.getFirst();
			Collection layerDeterminingEdges;
			Collection edgesToBeMarked;

			layerDeterminingEdges = internalNode.connectsAsTarget;
			edgesToBeMarked = internalNode.connectsAsSource;

			// flag to keep track of whether or not all layer determining
			// edges have been scanned
			boolean allEdgesScanned = true;

			// Work out the layer of this node from the layer determining
			// edges
			Iterator iter2 = layerDeterminingEdges
					.iterator();

			// The minimum layer number of any node connected by one of
			// the layer determining edges variable. If we are starting
			// from sources, need to start at some huge value and
			// normalise down afterwards
			int minimumLayer = SOURCESCANSTARTRANK;

			while (allEdgesScanned && iter2.hasNext())
			{
				mxGraphHierarchyEdge internalEdge = iter2.next();

				if (internalEdge.temp[0] == 5270620)
				{
					// This edge has been scanned, get the layer of the
					// node on the other end
					mxGraphHierarchyNode otherNode = internalEdge.source;
					minimumLayer = Math.min(minimumLayer,
								otherNode.temp[0] - 1);
				}
				else
				{
					allEdgesScanned = false;
				}
			}

			// If all edge have been scanned, assign the layer, mark all
			// edges in the other direction and remove from the nodes list
			if (allEdgesScanned)
			{
				internalNode.temp[0] = minimumLayer;
				maxRank = Math.min(maxRank, minimumLayer);

				if (edgesToBeMarked != null)
				{
					Iterator iter3 = edgesToBeMarked
							.iterator();

					while (iter3.hasNext())
					{
						mxGraphHierarchyEdge internalEdge = iter3.next();
						// Assign unique stamp ( y/m/d/h )
						internalEdge.temp[0] = 5270620;

						// Add node on other end of edge to LinkedList of
						// nodes to be analysed
						mxGraphHierarchyNode otherNode = internalEdge.target;

						// Only add node if it hasn't been assigned a layer
						if (otherNode.temp[0] == -1)
						{
							startNodes.addLast(otherNode);

							// Mark this other node as neither being
							// unassigned nor assigned so it isn't
							// added to this list again, but it's
							// layer isn't used in any calculation.
							otherNode.temp[0] = -2;
						}
					}
				}

				startNodes.removeFirst();
			}
			else
			{
				// Not all the edges have been scanned, get to the back of
				// the class and put the dunces cap on
				Object removedCell = startNodes.removeFirst();
				startNodes.addLast(internalNode);

				if (removedCell == internalNode && startNodes.size() == 1)
				{
					// This is an error condition, we can't get out of
					// this loop. It could happen for more than one node
					// but that's a lot harder to detect. Log the error
					// TODO make log comment
					break;
				}
			}
		}

		// Normalize the ranks down from their large starting value to place
		// at least 1 sink on layer 0
		iter = internalNodes.iterator();
		while (iter.hasNext())
		{
			mxGraphHierarchyNode internalNode = iter.next();
			// Mark the node as not having had a layer assigned
			internalNode.temp[0] -= maxRank;
		}
		
		// Tighten the roots as far as possible
		for (int i = 0; i < startNodesCopy.size(); i++)
		{
			mxGraphHierarchyNode internalNode = startNodesCopy.get(i);
			int currentMaxLayer = 0;
			Iterator iter2 = internalNode.connectsAsSource
					.iterator();

			while (iter2.hasNext())
			{
				mxGraphHierarchyEdge internalEdge = iter2.next();
				mxGraphHierarchyNode otherNode = internalEdge.target;
				internalNode.temp[0] = Math.max(currentMaxLayer,
						otherNode.temp[0] + 1);
				currentMaxLayer = internalNode.temp[0];
			}
		}

		// Reset the maxRank to that which would be expected for a from-sink
		// scan
		maxRank = SOURCESCANSTARTRANK - maxRank;
	}

	/**
	 * Fixes the layer assignments to the values stored in the nodes. Also needs
	 * to create dummy nodes for edges that cross layers.
	 */
	public void fixRanks()
	{
		final mxGraphHierarchyRank[] rankList = new mxGraphHierarchyRank[maxRank + 1];
		ranks = new LinkedHashMap(maxRank + 1);

		for (int i = 0; i < maxRank + 1; i++)
		{
			rankList[i] = new mxGraphHierarchyRank();
			ranks.put(new Integer(i), rankList[i]);
		}

		// Perform a DFS to obtain an initial ordering for each rank.
		// Without doing this you would end up having to process
		// crossings for a standard tree.
		mxGraphHierarchyNode[] rootsArray = null;

		if (roots != null)
		{
			Object[] oldRootsArray = roots.toArray();
			rootsArray = new mxGraphHierarchyNode[oldRootsArray.length];

			for (int i = 0; i < oldRootsArray.length; i++)
			{
				Object node = oldRootsArray[i];
				mxGraphHierarchyNode internalNode = vertexMapper.get(node);
				rootsArray[i] = internalNode;
			}
		}

		visit(new mxGraphHierarchyModel.CellVisitor()
		{
			public void visit(mxGraphHierarchyNode parent,
					mxGraphHierarchyNode cell,
					mxGraphHierarchyEdge connectingEdge, int layer, int seen)
			{
				mxGraphHierarchyNode node = cell;

				if (seen == 0 && node.maxRank < 0 && node.minRank < 0)
				{
					rankList[node.temp[0]].add(cell);
					node.maxRank = node.temp[0];
					node.minRank = node.temp[0];

					// Set temp[0] to the nodes position in the rank
					node.temp[0] = rankList[node.maxRank].size() - 1;
				}

				if (parent != null && connectingEdge != null)
				{
					int parentToCellRankDifference = (parent).maxRank
							- node.maxRank;

					if (parentToCellRankDifference > 1)
					{
						// There are ranks in between the parent and current cell
						mxGraphHierarchyEdge edge = connectingEdge;
						edge.maxRank = (parent).maxRank;
						edge.minRank = (cell).maxRank;
						edge.temp = new int[parentToCellRankDifference - 1];
						edge.x = new double[parentToCellRankDifference - 1];
						edge.y = new double[parentToCellRankDifference - 1];

						for (int i = edge.minRank + 1; i < edge.maxRank; i++)
						{
							// The connecting edge must be added to the
							// appropriate ranks
							rankList[i].add(edge);
							edge.setGeneralPurposeVariable(i,
									rankList[i].size() - 1);
						}
					}
				}
			}
		}, rootsArray, false, null);
	}

	/**
	 * A depth first search through the internal hierarchy model
	 * 
	 * @param visitor
	 *            the visitor pattern to be called for each node
	 * @param trackAncestors
	 *            whether or not the search is to keep track all nodes directly
	 *            above this one in the search path
	 */
	public void visit(CellVisitor visitor, mxGraphHierarchyNode[] dfsRoots,
			boolean trackAncestors, Set seenNodes)
	{
		// Run dfs through on all roots
		if (dfsRoots != null)
		{
			for (int i = 0; i < dfsRoots.length; i++)
			{
				mxGraphHierarchyNode internalNode = dfsRoots[i];

				if (internalNode != null)
				{
					if (seenNodes == null)
					{
						seenNodes = new HashSet();
					}

					if (trackAncestors)
					{
						// Set up hash code for root
						internalNode.hashCode = new int[2];
						internalNode.hashCode[0] = dfsCount;
						internalNode.hashCode[1] = i;
						dfs(null, internalNode, null, visitor, seenNodes,
								internalNode.hashCode, i, 0);
					}
					else
					{
						dfs(null, internalNode, null, visitor, seenNodes, 0);
					}
				}
			}

			dfsCount++;
		}
	}

	/**
	 * Performs a depth first search on the internal hierarchy model
	 * 
	 * @param parent
	 *            the parent internal node of the current internal node
	 * @param root
	 *            the current internal node
	 * @param connectingEdge
	 *            the internal edge connecting the internal node and the parent
	 *            internal node, if any
	 * @param visitor
	 *            the visitor pattern to be called for each node
	 * @param seen
	 *            a set of all nodes seen by this dfs a set of all of the
	 *            ancestor node of the current node
	 * @param layer
	 *            the layer on the dfs tree ( not the same as the model ranks )
	 */
	public void dfs(mxGraphHierarchyNode parent, mxGraphHierarchyNode root,
			mxGraphHierarchyEdge connectingEdge, CellVisitor visitor,
			Set seen, int layer)
	{
		if (root != null)
		{
			if (!seen.contains(root))
			{
				visitor.visit(parent, root, connectingEdge, layer, 0);
				seen.add(root);

				// Copy the connects as source list so that visitors
				// can change the original for edge direction inversions
				final Object[] outgoingEdges = root.connectsAsSource.toArray();

				for (int i = 0; i < outgoingEdges.length; i++)
				{
					mxGraphHierarchyEdge internalEdge = (mxGraphHierarchyEdge) outgoingEdges[i];
					mxGraphHierarchyNode targetNode = internalEdge.target;

					// Root check is O(|roots|)
					dfs(root, targetNode, internalEdge, visitor, seen,
							layer + 1);
				}
			}
			else
			{
				// Use the int field to indicate this node has been seen
				visitor.visit(parent, root, connectingEdge, layer, 1);
			}
		}
	}

	/**
	 * Performs a depth first search on the internal hierarchy model. This dfs
	 * extends the default version by keeping track of cells ancestors, but it
	 * should be only used when necessary because of it can be computationally
	 * intensive for deep searches.
	 * 
	 * @param parent
	 *            the parent internal node of the current internal node
	 * @param root
	 *            the current internal node
	 * @param connectingEdge
	 *            the internal edge connecting the internal node and the parent
	 *            internal node, if any
	 * @param visitor
	 *            the visitor pattern to be called for each node
	 * @param seen
	 *            a set of all nodes seen by this dfs
	 * @param ancestors
	 *            the parent hash code
	 * @param childHash
	 *            the new hash code for this node
	 * @param layer
	 *            the layer on the dfs tree ( not the same as the model ranks )
	 */
	public void dfs(mxGraphHierarchyNode parent, mxGraphHierarchyNode root,
			mxGraphHierarchyEdge connectingEdge, CellVisitor visitor,
			Set seen, int[] ancestors, int childHash,
			int layer)
	{
		// Explanation of custom hash set. Previously, the ancestors variable
		// was passed through the dfs as a HashSet. The ancestors were copied
		// into a new HashSet and when the new child was processed it was also
		// added to the set. If the current node was in its ancestor list it
		// meant there is a cycle in the graph and this information is passed
		// to the visitor.visit() in the seen parameter. The HashSet clone was
		// very expensive on CPU so a custom hash was developed using primitive
		// types. temp[] couldn't be used so hashCode[] was added to each node.
		// Each new child adds another int to the array, copying the prefix
		// from its parent. Child of the same parent add different ints (the
		// limit is therefore 2^32 children per parent...). If a node has a
		// child with the hashCode already set then the child code is compared
		// to the same portion of the current nodes array. If they match there
		// is a loop.
		// Note that the basic mechanism would only allow for 1 use of this
		// functionality, so the root nodes have two ints. The second int is
		// incremented through each node root and the first is incremented
		// through each run of the dfs algorithm (therefore the dfs is not
		// thread safe). The hash code of each node is set if not already set,
		// or if the first int does not match that of the current run.
		if (root != null)
		{
			if (parent != null)
			{
				// Form this nodes hash code if necessary, that is, if the
				// hashCode variable has not been initialized or if the
				// start of the parent hash code does not equal the start of
				// this nodes hash code, indicating the code was set on a
				// previous run of this dfs.
				if (root.hashCode == null
						|| root.hashCode[0] != parent.hashCode[0])
				{
					int hashCodeLength = parent.hashCode.length + 1;
					root.hashCode = new int[hashCodeLength];
					System.arraycopy(parent.hashCode, 0, root.hashCode, 0,
							parent.hashCode.length);
					root.hashCode[hashCodeLength - 1] = childHash;
				}
			}

			if (!seen.contains(root))
			{
				visitor.visit(parent, root, connectingEdge, layer, 0);
				seen.add(root);
				// Copy the connects as source list so that visitors
				// can change the original for edge direction inversions
				final Object[] outgoingEdges = root.connectsAsSource.toArray();

				for (int i = 0; i < outgoingEdges.length; i++)
				{
					mxGraphHierarchyEdge internalEdge = (mxGraphHierarchyEdge) outgoingEdges[i];
					mxGraphHierarchyNode targetNode = internalEdge.target;

					// Root check is O(|roots|)
					dfs(root, targetNode, internalEdge, visitor, seen,
							root.hashCode, i, layer + 1);
				}
			}
			else
			{
				// Use the int field to indicate this node has been seen
				visitor.visit(parent, root, connectingEdge, layer, 1);
			}
		}
	}

	/**
	 * Defines the interface that visitors use to perform operations upon the
	 * graph information during depth first search (dfs) or other tree-traversal
	 * strategies implemented by subclassers.
	 */
	public interface CellVisitor
	{

		/**
		 * The method within which the visitor will perform operations upon the
		 * graph model
		 * 
		 * @param parent
		 *            the parent cell the current cell
		 * @param cell
		 *            the current cell visited
		 * @param connectingEdge
		 *            the edge that led the last cell visited to this cell
		 * @param layer
		 *            the current layer of the tree
		 * @param seen
		 *            an int indicating whether this cell has been seen
		 *            previously
		 */
		public void visit(mxGraphHierarchyNode parent,
				mxGraphHierarchyNode cell, mxGraphHierarchyEdge connectingEdge,
				int layer, int seen);
	}

	/**
	 * @return Returns the vertexMapping.
	 */
	public Map getVertexMapper()
	{
		if (vertexMapper == null)
		{
			vertexMapper = new Hashtable();
		}
		return vertexMapper;
	}

	/**
	 * @param vertexMapping
	 *            The vertexMapping to set.
	 */
	public void setVertexMapper(Map vertexMapping)
	{
		this.vertexMapper = vertexMapping;
	}

	/**
	 * @return Returns the edgeMapper.
	 */
	public Map getEdgeMapper()
	{
		return edgeMapper;
	}

	/**
	 * @param edgeMapper
	 *            The edgeMapper to set.
	 */
	public void setEdgeMapper(Map edgeMapper)
	{
		this.edgeMapper = edgeMapper;
	}

	/**
	 * @return Returns the dfsCount.
	 */
	public int getDfsCount()
	{
		return dfsCount;
	}

	/**
	 * @param dfsCount
	 *            The dfsCount to set.
	 */
	public void setDfsCount(int dfsCount)
	{
		this.dfsCount = dfsCount;
	}
}