com.mxgraph.util.mxSpline1D Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of AptSpringProcessor Show documentation
Show all versions of AptSpringProcessor Show documentation
This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and
shaded jar.
The newest version!
/**
* Copyright (c) 2010, David Benson
*/
package com.mxgraph.util;
import java.util.Arrays;
/**
* One dimension of a spline curve
*/
public class mxSpline1D
{
protected double[] len;
protected double[] pos1D;
protected double[] a;
protected double[] b;
protected double[] c;
protected double[] d;
/** tracks the last index found since that is mostly commonly the next one used */
private int storageIndex = 0;
/**
* Creates a new Spline.
* @param controlPointProportions the proportion along the curve, from 0->1
* that each control point lies on
* @param positions1D the co-ordinate position in the current dimension that
* each control point lies on
*/
public mxSpline1D(double[] controlPointProportions, double[] positions1D)
{
setValues(controlPointProportions, positions1D);
}
/**
* Set values for this Spline.
* @param controlPointProportions the proportion along the curve, from 0->1
* that each control point lies on
* @param positions1D the co-ordinate position in the current dimension that
* each control point lies on
*/
public void setValues(double[] controlPointProportions, double[] positions1D)
{
this.len = controlPointProportions;
this.pos1D = positions1D;
if (len.length > 1)
{
calculateCoefficients();
}
}
/**
* Returns an interpolated value.
* @param x
* @return the interpolated value
*/
public double getValue(double x)
{
if (len.length == 0)
{
return Double.NaN;
}
if (len.length == 1)
{
if (len[0] == x)
{
return pos1D[0];
}
else
{
return Double.NaN;
}
}
int index = Arrays.binarySearch(len, x);
if (index > 0)
{
return pos1D[index];
}
index = - (index + 1) - 1;
//TODO linear interpolation or extrapolation
if (index < 0) {
return pos1D[0];
}
return a[index]
+ b[index] * (x - len[index])
+ c[index] * Math.pow(x - len[index], 2)
+ d[index] * Math.pow(x - len[index], 3);
}
/**
* Returns an interpolated value. To be used when a long sequence of values
* are required in order, but ensure checkValues() is called beforehand to
* ensure the boundary checks from getValue() are made
* @param x
* @return the interpolated value
*/
public double getFastValue(double x)
{
// Fast check to see if previous index is still valid
if (storageIndex > -1 && storageIndex < len.length-1 && x > len[storageIndex] && x < len[storageIndex + 1])
{
}
else
{
int index = Arrays.binarySearch(len, x);
if (index > 0)
{
return pos1D[index];
}
index = - (index + 1) - 1;
storageIndex = index;
}
//TODO linear interpolation or extrapolation
if (storageIndex < 0)
{
return pos1D[0];
}
double value = x - len[storageIndex];
return a[storageIndex]
+ b[storageIndex] * value
+ c[storageIndex] * (value * value)
+ d[storageIndex] * (value * value * value);
}
/**
* Returns the first derivation at x.
* @param x
* @return the first derivation at x
*/
public double getDx(double x)
{
if (len.length == 0 || len.length == 1)
{
return 0;
}
int index = Arrays.binarySearch(len, x);
if (index < 0)
{
index = - (index + 1) - 1;
}
return b[index]
+ 2 * c[index] * (x - len[index])
+ 3 * d[index] * Math.pow(x - len[index], 2);
}
/**
* Calculates the Spline coefficients.
*/
private void calculateCoefficients()
{
int N = pos1D.length;
a = new double[N];
b = new double[N];
c = new double[N];
d = new double[N];
if (N == 2) {
a[0] = pos1D[0];
b[0] = pos1D[1] - pos1D[0];
return;
}
double[] h = new double[N - 1];
for (int i = 0; i < N - 1; i++)
{
a[i] = pos1D[i];
h[i] = len[i + 1] - len[i];
// h[i] is used for division later, avoid a NaN
if (h[i] == 0.0)
{
h[i] = 0.01;
}
}
a[N - 1] = pos1D[N - 1];
double[][] A = new double[N - 2][N - 2];
double[] y = new double[N - 2];
for (int i = 0; i < N - 2; i++)
{
y[i] =
3
* ((pos1D[i + 2] - pos1D[i + 1]) / h[i
+ 1]
- (pos1D[i + 1] - pos1D[i]) / h[i]);
A[i][i] = 2 * (h[i] + h[i + 1]);
if (i > 0)
{
A[i][i - 1] = h[i];
}
if (i < N - 3)
{
A[i][i + 1] = h[i + 1];
}
}
solve(A, y);
for (int i = 0; i < N - 2; i++)
{
c[i + 1] = y[i];
b[i] = (a[i + 1] - a[i]) / h[i] - (2 * c[i] + c[i + 1]) / 3 * h[i];
d[i] = (c[i + 1] - c[i]) / (3 * h[i]);
}
b[N - 2] =
(a[N - 1] - a[N - 2]) / h[N
- 2]
- (2 * c[N - 2] + c[N - 1]) / 3 * h[N
- 2];
d[N - 2] = (c[N - 1] - c[N - 2]) / (3 * h[N - 2]);
}
/**
* Solves Ax=b and stores the solution in b.
*/
public void solve(double[][] A, double[] b) {
int n = b.length;
for (int i = 1; i < n; i++)
{
A[i][i - 1] = A[i][i - 1] / A[i - 1][i - 1];
A[i][i] = A[i][i] - A[i - 1][i] * A[i][i - 1];
b[i] = b[i] - A[i][i - 1] * b[i - 1];
}
b[n - 1] = b[n - 1] / A[n - 1][n - 1];
for (int i = b.length - 2; i >= 0; i--)
{
b[i] = (b[i] - A[i][i + 1] * b[i + 1]) / A[i][i];
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy