com.salesforce.jgrapht.GraphMetrics Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2017-2018, by Joris Kinable and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package com.salesforce.jgrapht;
import com.salesforce.jgrapht.alg.shortestpath.*;
import com.salesforce.jgrapht.alg.util.*;
import java.util.*;
import java.util.stream.*;
/**
* Collection of methods which provide numerical graph information.
*
* @author Joris Kinable
* @author Alexandru Valeanu
*/
public abstract class GraphMetrics
{
/**
* Compute the diameter of the
* graph. The diameter of a graph is defined as $\max_{v\in V}\epsilon(v)$, where $\epsilon(v)$
* is the eccentricity of vertex $v$. In other words, this method computes the 'longest shortest
* path'. Two special cases exist. If the graph has no vertices, the diameter is 0. If the graph
* is disconnected, the diameter is {@link Double#POSITIVE_INFINITY}.
*
* For more fine-grained control over this method, or if you need additional distance metrics
* such as the graph radius, consider using {@link com.salesforce.jgrapht.alg.shortestpath.GraphMeasurer}
* instead.
*
* @param graph input graph
* @param graph vertex type
* @param graph edge type
* @return the diameter of the graph.
*/
public static double getDiameter(Graph graph)
{
return new GraphMeasurer<>(graph).getDiameter();
}
/**
* Compute the radius of the graph.
* The radius of a graph is defined as $\min_{v\in V}\epsilon(v)$, where $\epsilon(v)$ is the
* eccentricity of vertex $v$. Two special cases exist. If the graph has no vertices, the radius
* is 0. If the graph is disconnected, the diameter is {@link Double#POSITIVE_INFINITY}.
*
* For more fine-grained control over this method, or if you need additional distance metrics
* such as the graph diameter, consider using {@link com.salesforce.jgrapht.alg.shortestpath.GraphMeasurer}
* instead.
*
* @param graph input graph
* @param graph vertex type
* @param graph edge type
* @return the diameter of the graph.
*/
public static double getRadius(Graph graph)
{
return new GraphMeasurer<>(graph).getRadius();
}
/**
* Compute the girth of the graph. The
* girth of a graph is the length (number of edges) of the smallest cycle in the graph. Acyclic
* graphs are considered to have infinite girth. For directed graphs, the length of the shortest
* directed cycle is returned (see Bang-Jensen, J., Gutin, G., Digraphs: Theory, Algorithms and
* Applications, Springer Monographs in Mathematics, ch 1, ch 8.4.). Simple undirected graphs
* have a girth of at least 3 (triangle cycle). Directed graphs and Multigraphs have a girth of
* at least 2 (parallel edges/arcs), and in Pseudo graphs have a girth of at least 1
* (self-loop).
*
* This implementation is loosely based on these notes.
* In essence, this method invokes a Breadth-First search from every vertex in the graph. A
* single Breadth-First search takes $O(n+m)$ time, where $n$ is the number of vertices in the
* graph, and $m$ the number of edges. Consequently, the runtime complexity of this method is
* $O(n(n+m))=O(mn)$.
*
* An algorithm with the same worst case runtime complexity, but a potentially better average
* runtime complexity of $O(n^2)$ is described in: Itai, A. Rodeh, M. Finding a minimum circuit
* in a graph. SIAM J. Comput. Vol 7, No 4, 1987.
*
* @param graph input graph
* @param graph vertex type
* @param graph edge type
* @return girth of the graph, or {@link Integer#MAX_VALUE} if the graph is acyclic.
*/
public static int getGirth(Graph graph)
{
final int NIL = -1;
final boolean isAllowingMultipleEdges = graph.getType().isAllowingMultipleEdges();
// Ordered sequence of vertices
List vertices = new ArrayList<>(graph.vertexSet());
// Index map of vertices in ordered sequence
Map indexMap = new HashMap<>();
for (int i = 0; i < vertices.size(); i++)
indexMap.put(vertices.get(i), i);
// Objective
int girth = Integer.MAX_VALUE;
// Array storing the depth of each vertex in the search tree
int[] depth = new int[vertices.size()];
// Queue for BFS
Queue queue = new LinkedList<>();
// Check whether the graph has self-loops
if (graph.getType().isAllowingSelfLoops())
for (V v : vertices)
if (graph.containsEdge(v, v))
return 1;
NeighborCache neighborIndex = new NeighborCache<>(graph);
if (graph.getType().isUndirected()) {
// Array which keeps track of the search tree structure to prevent revisiting parent
// nodes
int[] parent = new int[vertices.size()];
// Start a BFS search tree from each vertex. The search stops when a triangle (smallest
// possible cycle) is found.
// The last two vertices can be ignored.
for (int i = 0; i < vertices.size() - 2 && girth > 3; i++) {
// Reset data structures
Arrays.fill(depth, NIL);
Arrays.fill(parent, NIL);
queue.clear();
depth[i] = 0;
queue.add(vertices.get(i));
int depthU;
do {
V u = queue.poll();
int indexU = indexMap.get(u);
depthU = depth[indexU];
// Visit all neighbors of vertex u
for (V v : neighborIndex.neighborsOf(u)) {
int indexV = indexMap.get(v);
if (parent[indexU] == indexV) { // Skip the parent of vertex u, unless there
// are multiple edges between u and v
if (!isAllowingMultipleEdges || graph.getAllEdges(u, v).size() == 1)
continue;
}
int depthV = depth[indexV];
if (depthV == NIL) { // New neighbor discovered
queue.add(v);
depth[indexV] = depthU + 1;
parent[indexV] = indexU;
} else { // Rediscover neighbor: found cycle.
girth = Math.min(girth, depthU + depthV + 1);
}
}
} while (!queue.isEmpty() && 2 * (depthU + 1) - 1 < girth);
}
} else { // Directed case
for (int i = 0; i < vertices.size() - 1 && girth > 2; i++) {
// Reset data structures
Arrays.fill(depth, NIL);
queue.clear();
depth[i] = 0;
queue.add(vertices.get(i));
int depthU;
do {
V u = queue.poll();
int indexU = indexMap.get(u);
depthU = depth[indexU];
// Visit all neighbors of vertex u
for (V v : neighborIndex.successorsOf(u)) {
int indexV = indexMap.get(v);
int depthV = depth[indexV];
if (depthV == NIL) { // New neighbor discovered
queue.add(v);
depth[indexV] = depthU + 1;
} else if (depthV == 0) { // Rediscover root: found cycle.
girth = Math.min(girth, depthU + depthV + 1);
}
}
} while (!queue.isEmpty() && depthU + 1 < girth);
}
}
assert graph.getType().isUndirected() && graph.getType().isSimple() && girth >= 3
|| graph.getType().isAllowingSelfLoops() && girth >= 1 || girth >= 2
&& (graph.getType().isDirected() || graph.getType().isAllowingMultipleEdges());
return girth;
}
/**
* An $O(|V|^3)$ (assuming vertexSubset provides constant time indexing) naive implementation
* for counting non-trivial triangles in an undirected graph induced by the subset of vertices.
*
* @param graph the input graph
* @param vertexSubset the vertex subset
* @param the graph vertex type
* @param the graph edge type
* @return the number of triangles in the graph induced by vertexSubset
*/
static long naiveCountTriangles(Graph graph, List vertexSubset)
{
long total = 0;
for (int i = 0; i < vertexSubset.size(); i++) {
for (int j = i + 1; j < vertexSubset.size(); j++) {
for (int k = j + 1; k < vertexSubset.size(); k++) {
V u = vertexSubset.get(i);
V v = vertexSubset.get(j);
V w = vertexSubset.get(k);
if (graph.containsEdge(u, v) && graph.containsEdge(v, w)
&& graph.containsEdge(w, u))
{
total++;
}
}
}
}
return total;
}
/**
* An $O(|E|^{3/2})$ algorithm for counting the number of non-trivial triangles in an undirected
* graph. A non-trivial triangle is formed by three distinct vertices all connected to each
* other.
*
*
* For more details of this algorithm see Ullman, Jeffrey: "Mining of Massive Datasets",
* Cambridge University Press, Chapter 10
*
* @param graph the input graph
* @param the graph vertex type
* @param the graph edge type
* @return the number of triangles in the graph
* @throws NullPointerException if {@code graph} is {@code null}
* @throws IllegalArgumentException if {@code graph} is not undirected
*/
public static long getNumberOfTriangles(Graph graph)
{
GraphTests.requireUndirected(graph);
final int sqrtV = (int) Math.sqrt(graph.vertexSet().size());
List vertexList = new ArrayList<>(graph.vertexSet());
/*
* The book suggest the following comparator: "Compare vertices based on their degree. If
* equal compare them of their actual value, since they are all integers".
*/
// Fix vertex order for unique comparison of vertices
Map vertexOrder = new HashMap<>(graph.vertexSet().size());
int k = 0;
for (V v : graph.vertexSet()) {
vertexOrder.put(v, k++);
}
Comparator comparator = Comparator
.comparingInt(graph::degreeOf).thenComparingInt(System::identityHashCode)
.thenComparingInt(vertexOrder::get);
vertexList.sort(comparator);
// vertex v is a heavy-hitter iff degree(v) >= sqrtV
List heavyHitterVertices =
vertexList.stream().filter(x -> graph.degreeOf(x) >= sqrtV).collect(
Collectors.toCollection(ArrayList::new));
// count the number of triangles formed from only heavy-hitter vertices
long numberTriangles = naiveCountTriangles(graph, heavyHitterVertices);
for (E edge : graph.edgeSet()) {
V v1 = graph.getEdgeSource(edge);
V v2 = graph.getEdgeTarget(edge);
if (v1 == v2) {
continue;
}
if (graph.degreeOf(v1) < sqrtV || graph.degreeOf(v2) < sqrtV) {
// ensure that v1 <= v2 (swap them otherwise)
if (comparator.compare(v1, v2) > 0) {
V tmp = v1;
v1 = v2;
v2 = tmp;
}
for (E e : graph.edgesOf(v1)) {
V u = Graphs.getOppositeVertex(graph, e, v1);
// check if the triangle is non-trivial: u, v1, v2 are distinct vertices
if (u == v1 || u == v2) {
continue;
}
/*
* Check if v2 <= u and if (u, v2) is a valid edge. If both of them are true,
* then we have a new triangle (v1, v2, u) and all three vertices in the
* triangle are ordered (v1 <= v2 <= u) so we count it only once.
*/
if (comparator.compare(v2, u) <= 0 && graph.containsEdge(u, v2)) {
numberTriangles++;
}
}
}
}
return numberTriangles;
}
}