All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.StoerWagnerMinimumCut Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2011-2018, by Robby McKilliam, Ernst de Ridder and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.graph.*;

import java.util.*;

/**
 * Implements the Stoer and Wagner minimum cut
 * algorithm. Deterministically computes the minimum cut in $O(|V||E| + |V| \log |V|)$ time.
 * This implementation uses Java's PriorityQueue and requires $O(|V||E| \log |E|)$ time. M. Stoer
 * and F. Wagner, "A Simple Min-Cut Algorithm", Journal of the ACM, volume 44, number 4. pp 585-591,
 * 1997.
 *
 * @param  the graph vertex type
 * @param  the graph edge type
 *
 * @author Robby McKilliam
 * @author Ernst de Ridder
 */
public class StoerWagnerMinimumCut
{
    final Graph, DefaultWeightedEdge> workingGraph;

    protected double bestCutWeight = Double.POSITIVE_INFINITY;
    protected Set bestCut;

    /**
     * Will compute the minimum cut in graph.
     *
     * @param graph graph over which to run algorithm
     *
     * @throws IllegalArgumentException if a negative weight edge is found
     * @throws IllegalArgumentException if graph has less than 2 vertices
     */
    public StoerWagnerMinimumCut(Graph graph)
    {
        GraphTests.requireUndirected(graph, "Graph must be undirected");

        if (graph.vertexSet().size() < 2) {
            throw new IllegalArgumentException("Graph has less than 2 vertices");
        }

        // get a version of this graph where each vertex is wrapped with a list
        workingGraph = new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
        Map> vertexMap = new HashMap<>();
        for (V v : graph.vertexSet()) {
            Set list = new HashSet<>();
            list.add(v);
            vertexMap.put(v, list);
            workingGraph.addVertex(list);
        }
        for (E e : graph.edgeSet()) {
            if (graph.getEdgeWeight(e) < 0.0) {
                throw new IllegalArgumentException("Negative edge weights not allowed");
            }

            V s = graph.getEdgeSource(e);
            Set sNew = vertexMap.get(s);
            V t = graph.getEdgeTarget(e);
            Set tNew = vertexMap.get(t);

            // For multigraphs, we sum the edge weights (either all are
            // contained in a cut, or none)
            DefaultWeightedEdge eNew = workingGraph.getEdge(sNew, tNew);
            if (eNew == null) {
                eNew = workingGraph.addEdge(sNew, tNew);
                workingGraph.setEdgeWeight(eNew, graph.getEdgeWeight(e));
            } else {
                workingGraph
                    .setEdgeWeight(eNew, workingGraph.getEdgeWeight(eNew) + graph.getEdgeWeight(e));
            }
        }

        // arbitrary vertex used to seed the algorithm.
        Set a = workingGraph.vertexSet().iterator().next();

        while (workingGraph.vertexSet().size() > 1) {
            minimumCutPhase(a);
        }
    }

    /**
     * Implements the MinimumCutPhase function of Stoer and Wagner.
     * 
     * @param a the vertex
     */
    protected void minimumCutPhase(Set a)
    {
        // The last and before last vertices added to A.
        Set last = a, beforelast = null;

        // queue contains vertices not in A ordered by max weight of edges to A.
        PriorityQueue queue = new PriorityQueue<>();

        // Maps vertices to elements of queue
        Map, VertexAndWeight> dmap = new HashMap<>();

        // Initialize queue
        for (Set v : workingGraph.vertexSet()) {
            if (v == a) {
                continue;
            }
            DefaultWeightedEdge e = workingGraph.getEdge(v, a);
            Double w = (e == null) ? 0.0 : workingGraph.getEdgeWeight(e);
            VertexAndWeight vandw = new VertexAndWeight(v, w, e != null);
            queue.add(vandw);
            dmap.put(v, vandw);
        }

        // Now iteratively update the queue to get the required vertex ordering

        while (!queue.isEmpty()) {
            Set v = queue.poll().vertex;
            dmap.remove(v);

            beforelast = last;
            last = v;

            for (DefaultWeightedEdge e : workingGraph.edgesOf(v)) {
                Set vc = Graphs.getOppositeVertex(workingGraph, e, v);
                VertexAndWeight vcandw = dmap.get(vc);
                if (vcandw != null) {
                    queue.remove(vcandw); // this is O(log n) but could be O(1)?
                    vcandw.active = true;
                    vcandw.weight += workingGraph.getEdgeWeight(e);
                    queue.add(vcandw); // this is O(log n) but could be O(1)?
                }
            }
        }

        // Update the best cut
        double w = vertexWeight(last);
        if (w < bestCutWeight) {
            bestCutWeight = w;
            bestCut = last;
        }

        // merge the last added vertices
        mergeVertices(beforelast, last);
    }

    /**
     * Return the weight of the minimum cut
     * 
     * @return the weight of the minimum cut
     */
    public double minCutWeight()
    {
        return bestCutWeight;
    }

    /**
     * Return a set of vertices on one side of the cut
     * 
     * @return a set of vertices on one side of the cut
     */
    public Set minCut()
    {
        return bestCut;
    }

    /**
     * Merges vertex $t$ into vertex $s$, summing the weights as required. Returns the merged vertex
     * and the sum of its weights
     * 
     * @param s the first vertex
     * @param t the second vertex
     * 
     * @return the merged vertex and its weight
     */
    protected VertexAndWeight mergeVertices(Set s, Set t)
    {
        // construct the new combinedvertex
        Set set = new HashSet<>();
        set.addAll(s);
        set.addAll(t);
        workingGraph.addVertex(set);

        // add edges and weights to the combined vertex
        double wsum = 0.0;
        for (Set v : workingGraph.vertexSet()) {
            if ((s != v) && (t != v)) {
                double neww = 0.0;
                DefaultWeightedEdge etv = workingGraph.getEdge(t, v);
                DefaultWeightedEdge esv = workingGraph.getEdge(s, v);
                if (etv != null) {
                    neww += workingGraph.getEdgeWeight(etv);
                }
                if (esv != null) {
                    neww += workingGraph.getEdgeWeight(esv);
                }
                if ((etv != null) || (esv != null)) {
                    wsum += neww;
                    workingGraph.setEdgeWeight(workingGraph.addEdge(set, v), neww);
                }
            }
        }

        // remove original vertices
        workingGraph.removeVertex(t);
        workingGraph.removeVertex(s);

        return new VertexAndWeight(set, wsum, false);
    }

    /**
     * Compute the sum of the weights entering a vertex
     * 
     * @param v the vertex
     * @return the sum of the weights entering a vertex
     */
    public double vertexWeight(Set v)
    {
        double wsum = 0.0;
        for (DefaultWeightedEdge e : workingGraph.edgesOf(v)) {
            wsum += workingGraph.getEdgeWeight(e);
        }
        return wsum;
    }

    /**
     * Class for weighted vertices
     */
    protected class VertexAndWeight
        implements
        Comparable
    {
        public Set vertex;
        public Double weight;
        public boolean active; // active == neighbour in A

        /**
         * Construct a new weighted vertex.
         * 
         * @param v the vertex
         * @param w the weight of the vertex
         * @param active whether it is active
         */
        public VertexAndWeight(Set v, double w, boolean active)
        {
            this.vertex = v;
            this.weight = w;
            this.active = active;
        }

        /**
         * compareTo that sorts in reverse order because we need extract-max and queue provides
         * extract-min.
         */
        @Override
        public int compareTo(VertexAndWeight that)
        {
            if (this.active && that.active) {
                return -Double.compare(weight, that.weight);
            }
            if (this.active && !that.active) {
                return -1;
            }
            if (!this.active && that.active) {
                return +1;
            }

            // both inactive
            return 0;
        }

        @Override
        public String toString()
        {
            return "(" + vertex + ", " + weight + ")";
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy