All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.clique.BronKerboschCliqueFinder Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2005-2018, by Ewgenij Proschak and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.clique;

import com.salesforce.jgrapht.*;

import java.util.*;
import java.util.concurrent.*;

/**
 * Bron-Kerbosch maximal clique enumeration algorithm.
 * 
 * 

* Implementation of the Bron-Kerbosch clique enumeration algorithm as described in: *

    *
  • R. Samudrala and J. Moult. A graph-theoretic algorithm for comparative modeling of protein * structure. Journal of Molecular Biology, 279(1):287--302, 1998.
  • *
* *

* The algorithm first computes all maximal cliques and then returns the result to the user. A * timeout can be set using the constructor parameters. * * @param the graph vertex type * @param the graph edge type * * @see PivotBronKerboschCliqueFinder * @see DegeneracyBronKerboschCliqueFinder * * @author Ewgenij Proschak */ public class BronKerboschCliqueFinder extends BaseBronKerboschCliqueFinder { /** * Constructs a new clique finder. * * @param graph the input graph; must be simple */ public BronKerboschCliqueFinder(Graph graph) { this(graph, 0L, TimeUnit.SECONDS); } /** * Constructs a new clique finder. * * @param graph the input graph; must be simple * @param timeout the maximum time to wait, if zero no timeout * @param unit the time unit of the timeout argument */ public BronKerboschCliqueFinder(Graph graph, long timeout, TimeUnit unit) { super(graph, timeout, unit); } /** * Lazily execute the enumeration algorithm. */ @Override protected void lazyRun() { if (allMaximalCliques == null) { if (!GraphTests.isSimple(graph)) { throw new IllegalArgumentException("Graph must be simple"); } allMaximalCliques = new ArrayList<>(); long nanosTimeLimit; try { nanosTimeLimit = Math.addExact(System.nanoTime(), nanos); } catch (ArithmeticException ignore) { nanosTimeLimit = Long.MAX_VALUE; } findCliques( new ArrayList<>(), new ArrayList<>(graph.vertexSet()), new ArrayList<>(), nanosTimeLimit); } } private void findCliques( List potentialClique, List candidates, List alreadyFound, final long nanosTimeLimit) { /* * Termination condition: check if any already found node is connected to all candidate * nodes. */ for (V v : alreadyFound) { if (candidates.stream().allMatch(c -> graph.containsEdge(v, c))) { return; } } /* * Check each candidate */ for (V candidate : new ArrayList<>(candidates)) { /* * Check if timeout */ if (nanosTimeLimit - System.nanoTime() < 0) { timeLimitReached = true; return; } List newCandidates = new ArrayList<>(); List newAlreadyFound = new ArrayList<>(); // move candidate node to potentialClique potentialClique.add(candidate); candidates.remove(candidate); // create newCandidates by removing nodes in candidates not // connected to candidate node for (V newCandidate : candidates) { if (graph.containsEdge(candidate, newCandidate)) { newCandidates.add(newCandidate); } } // create newAlreadyFound by removing nodes in alreadyFound // not connected to candidate node for (V newFound : alreadyFound) { if (graph.containsEdge(candidate, newFound)) { newAlreadyFound.add(newFound); } } // if newCandidates and newAlreadyFound are empty if (newCandidates.isEmpty() && newAlreadyFound.isEmpty()) { // potential clique is maximal clique Set maximalClique = new HashSet<>(potentialClique); allMaximalCliques.add(maximalClique); maxSize = Math.max(maxSize, maximalClique.size()); } else { // recursive call findCliques(potentialClique, newCandidates, newAlreadyFound, nanosTimeLimit); } // move candidate node from potentialClique to alreadyFound alreadyFound.add(candidate); potentialClique.remove(candidate); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy