All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.clique.DegeneracyBronKerboschCliqueFinder Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2017-2018, by Dimitrios Michail and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.clique;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.traverse.*;

import java.util.*;
import java.util.concurrent.*;

/**
 * Bron-Kerbosch maximal clique enumeration algorithm with pivot and degeneracy ordering.
 * 
 * 

* The algorithm is a variant of the Bron-Kerbosch algorithm which apart from the pivoting uses a * degeneracy ordering of the vertices. The algorithm is described in *

    *
  • David Eppstein, Maarten Löffler and Darren Strash. Listing All Maximal Cliques in Sparse * Graphs in Near-Optimal Time. Algorithms and Computation: 21st International Symposium (ISSAC), * 403--414, 2010.
  • *
* *

* and has running time $O(d n 3^{d/3})$ where $n$ is the number of vertices of the graph and $d$ is * the degeneracy of the graph. The algorithm looks for a maximal clique parameterized by * degeneracy, a frequently-used measure of the sparseness of a graph that is closely related to * other common sparsity measures such as arboricity and thickness, and that has previously been * used for other fixed-parameter problems. * *

* The algorithm first computes all maximal cliques and then returns the result to the user. A * timeout can be set using the constructor parameters. * * @param the graph vertex type * @param the graph edge type * * @see BronKerboschCliqueFinder * @see PivotBronKerboschCliqueFinder * * @author Dimitrios Michail */ public class DegeneracyBronKerboschCliqueFinder extends PivotBronKerboschCliqueFinder { /** * Constructs a new clique finder. * * @param graph the input graph; must be simple */ public DegeneracyBronKerboschCliqueFinder(Graph graph) { this(graph, 0L, TimeUnit.SECONDS); } /** * Constructs a new clique finder. * * @param graph the input graph; must be simple * @param timeout the maximum time to wait, if zero no timeout * @param unit the time unit of the timeout argument */ public DegeneracyBronKerboschCliqueFinder(Graph graph, long timeout, TimeUnit unit) { super(graph, timeout, unit); } /** * Lazily execute the enumeration algorithm. */ @Override protected void lazyRun() { if (allMaximalCliques == null) { if (!GraphTests.isSimple(graph)) { throw new IllegalArgumentException("Graph must be simple"); } allMaximalCliques = new ArrayList<>(); long nanosTimeLimit; try { nanosTimeLimit = Math.addExact(System.nanoTime(), nanos); } catch (ArithmeticException ignore) { nanosTimeLimit = Long.MAX_VALUE; } List ordering = new ArrayList<>(); new DegeneracyOrderingIterator(graph).forEachRemaining(ordering::add); int n = ordering.size(); for (int i = 0; i < n; i++) { V vi = ordering.get(i); Set viNeighbors = new HashSet<>(); for (E e : graph.edgesOf(vi)) { viNeighbors.add(Graphs.getOppositeVertex(graph, e, vi)); } Set P = new HashSet<>(); for (int j = i + 1; j < n; j++) { V vj = ordering.get(j); if (viNeighbors.contains(vj)) { P.add(vj); } } Set R = new HashSet<>(); R.add(vi); Set X = new HashSet<>(); for (int j = 0; j < i; j++) { V vj = ordering.get(j); if (viNeighbors.contains(vj)) { X.add(vj); } } /* * Call the pivot version */ findCliques(P, R, X, nanosTimeLimit); } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy