All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.cycle.SzwarcfiterLauerSimpleCycles Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2013-2018, by Nikolay Ognyanov and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.cycle;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.connectivity.*;

import java.util.*;

/**
 * Find all simple cycles of a directed graph using the Schwarcfiter and Lauer's algorithm.
 *
 * 

* See:
* J.L.Szwarcfiter and P.E.Lauer, Finding the elementary cycles of a directed graph in $O(n + m)$ * per cycle, Technical Report Series, #60, May 1974, Univ. of Newcastle upon Tyne, Newcastle upon * Tyne, England. * * @param the vertex type. * @param the edge type. * * @author Nikolay Ognyanov */ public class SzwarcfiterLauerSimpleCycles implements DirectedSimpleCycles { // The graph. private Graph graph; // The state of the algorithm. private List> cycles = null; private V[] iToV = null; private Map vToI = null; private Map> bSets = null; private ArrayDeque stack = null; private Set marked = null; private Map> removed = null; private int[] position = null; private boolean[] reach = null; private List startVertices = null; /** * Create a simple cycle finder with an unspecified graph. */ public SzwarcfiterLauerSimpleCycles() { } /** * Create a simple cycle finder for the specified graph. * * @param graph - the DirectedGraph in which to find cycles. * * @throws IllegalArgumentException if the graph argument is * null. */ public SzwarcfiterLauerSimpleCycles(Graph graph) { this.graph = GraphTests.requireDirected(graph, "Graph must be directed"); } /** * Get the graph * * @return graph */ public Graph getGraph() { return graph; } /** * Set the graph * * @param graph graph */ public void setGraph(Graph graph) { this.graph = GraphTests.requireDirected(graph, "Graph must be directed"); } /** * {@inheritDoc} */ @Override public List> findSimpleCycles() { // Just a straightforward implementation of // the algorithm. if (graph == null) { throw new IllegalArgumentException("Null graph."); } initState(); KosarajuStrongConnectivityInspector inspector = new KosarajuStrongConnectivityInspector<>(graph); List> sccs = inspector.stronglyConnectedSets(); for (Set scc : sccs) { int maxInDegree = -1; V startVertex = null; for (V v : scc) { int inDegree = graph.inDegreeOf(v); if (inDegree > maxInDegree) { maxInDegree = inDegree; startVertex = v; } } startVertices.add(startVertex); } for (V vertex : startVertices) { cycle(toI(vertex), 0); } List> result = cycles; clearState(); return result; } private boolean cycle(int v, int q) { boolean foundCycle = false; V vV = toV(v); marked.add(vV); stack.push(vV); int t = stack.size(); position[v] = t; if (!reach[v]) { q = t; } Set avRemoved = getRemoved(vV); Set edgeSet = graph.outgoingEdgesOf(vV); for (E e : edgeSet) { V wV = graph.getEdgeTarget(e); if (avRemoved.contains(wV)) { continue; } int w = toI(wV); if (!marked.contains(wV)) { boolean gotCycle = cycle(w, q); if (gotCycle) { foundCycle = true; } else { noCycle(v, w); } } else if (position[w] <= q) { foundCycle = true; List cycle = new ArrayList<>(); Iterator it = stack.descendingIterator(); V current; while (it.hasNext()) { current = it.next(); if (wV.equals(current)) { break; } } cycle.add(wV); while (it.hasNext()) { current = it.next(); cycle.add(current); if (current.equals(vV)) { break; } } cycles.add(cycle); } else { noCycle(v, w); } } stack.pop(); if (foundCycle) { unmark(v); } reach[v] = true; position[v] = graph.vertexSet().size(); return foundCycle; } private void noCycle(int x, int y) { V xV = toV(x); V yV = toV(y); Set by = getBSet(yV); Set axRemoved = getRemoved(xV); by.add(xV); axRemoved.add(yV); } private void unmark(int x) { V xV = toV(x); marked.remove(xV); Set bx = getBSet(xV); for (V yV : bx) { Set ayRemoved = getRemoved(yV); ayRemoved.remove(xV); if (marked.contains(yV)) { unmark(toI(yV)); } } bx.clear(); } @SuppressWarnings("unchecked") private void initState() { cycles = new ArrayList<>(); iToV = (V[]) graph.vertexSet().toArray(); vToI = new HashMap<>(); bSets = new HashMap<>(); stack = new ArrayDeque<>(); marked = new HashSet<>(); removed = new HashMap<>(); int size = graph.vertexSet().size(); position = new int[size]; reach = new boolean[size]; startVertices = new ArrayList<>(); for (int i = 0; i < iToV.length; i++) { vToI.put(iToV[i], i); } } private void clearState() { cycles = null; iToV = null; vToI = null; bSets = null; stack = null; marked = null; removed = null; position = null; reach = null; startVertices = null; } private Integer toI(V v) { return vToI.get(v); } private V toV(int i) { return iToV[i]; } private Set getBSet(V v) { // B sets are typically not all // needed, so instantiate lazily. return bSets.computeIfAbsent(v, k -> new HashSet<>()); } private Set getRemoved(V v) { // Removed sets typically not all // needed, so instantiate lazily. return removed.computeIfAbsent(v, k -> new HashSet<>()); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy