com.salesforce.jgrapht.alg.lca.BinaryLiftingLCAFinder Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2018-2018, by Alexandru Valeanu and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package com.salesforce.jgrapht.alg.lca;
import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.interfaces.*;
import com.salesforce.jgrapht.util.*;
import java.util.*;
import static com.salesforce.jgrapht.util.MathUtil.log2;
/**
* Algorithm for computing lowest common ancestors in rooted trees and forests using the binary
* lifting method.
*
*
* The method appears in Bender, Michael A., and Martın Farach-Colton. "The level ancestor
* problem simplified." Theoretical Computer Science 321.1 (2004): 5-12 and it is also nicely
* presented in the following article on Topcoder
* for more details about the algorithm.
*
*
*
* Algorithm idea:
* We improve on the naive approach by using jump pointers. These are pointers at a node which
* reference one of the node’s ancestors. Each node stores jump pointers to ancestors at levels 1,
* 2, 4, . . . , 2^k.
* Queries are answered by repeatedly jumping from node to node, each time jumping more than half of
* the remaining levels between the current ancestor and the goal ancestor (i.e. the lca). The
* worst-case number of jumps is $O(log(|V|))$.
*
*
*
*
* Preprocessing Time complexity: $O(|V| log(|V|))$
* Preprocessing Space complexity: $O(|V| log(|V|))$
* Query Time complexity: $O(log(|V|))$
* Query Space complexity: $O(1)$
*
*
*
* For small (i.e. less than 100 vertices) trees or forests, all implementations behave similarly.
* For larger trees/forests with less than 50,000 queries you can use either
* {@link BinaryLiftingLCAFinder}, {@link HeavyPathLCAFinder} or {@link EulerTourRMQLCAFinder}. Fo
* more than that use {@link EulerTourRMQLCAFinder} since it provides $O(1)$ per query.
* Space-wise, {@link HeavyPathLCAFinder} and {@link TarjanLCAFinder} only use a linear amount while
* {@link BinaryLiftingLCAFinder} and {@link EulerTourRMQLCAFinder} require linearithmic space.
* For DAGs, use {@link NaiveLCAFinder}.
*
*
* @param the graph vertex type
* @param the graph edge type
*
* @author Alexandru Valeanu
*/
public class BinaryLiftingLCAFinder
implements
LowestCommonAncestorAlgorithm
{
private final Graph graph;
private final Set roots;
private final int maxLevel;
private Map vertexMap;
private List indexList;
// ancestors[u][i] = the 2^i ancestor of u (e.g ancestors[u][0] = father(u))
private int[][] ancestors;
private int[] timeIn, timeOut;
private int clock = 0;
private int numberComponent;
private int[] component;
/**
* Construct a new instance of the algorithm.
*
*
* Note: The constructor will NOT check if the input graph is a valid tree.
*
* @param graph the input graph
* @param root the root of the graph
*/
public BinaryLiftingLCAFinder(Graph graph, V root)
{
this(graph, Collections.singleton(Objects.requireNonNull(root, "root cannot be null")));
}
/**
* Construct a new instance of the algorithm.
*
*
* Note: If two roots appear in the same tree, an error will be thrown.
*
*
* Note: The constructor will NOT check if the input graph is a valid forest.
*
* @param graph the input graph
* @param roots the set of roots of the graph
*/
public BinaryLiftingLCAFinder(Graph graph, Set roots)
{
this.graph = Objects.requireNonNull(graph, "graph cannot be null");
this.roots = Objects.requireNonNull(roots, "roots cannot be null");
this.maxLevel = log2(graph.vertexSet().size());
if (this.roots.isEmpty())
throw new IllegalArgumentException("roots cannot be empty");
if (!graph.vertexSet().containsAll(roots))
throw new IllegalArgumentException("at least one root is not a valid vertex");
computeAncestorMatrix();
}
private void normalizeGraph()
{
VertexToIntegerMapping vertexToIntegerMapping = Graphs.getVertexToIntegerMapping(graph);
vertexMap = vertexToIntegerMapping.getVertexMap();
indexList = vertexToIntegerMapping.getIndexList();
}
private void dfs(int u, int parent)
{
component[u] = numberComponent;
timeIn[u] = ++clock;
ancestors[0][u] = parent;
for (int l = 1; l < maxLevel; l++) {
if (ancestors[l - 1][u] != -1)
ancestors[l][u] = ancestors[l - 1][ancestors[l - 1][u]];
}
V vertexU = indexList.get(u);
for (E edge : graph.outgoingEdgesOf(vertexU)) {
int v = vertexMap.get(Graphs.getOppositeVertex(graph, edge, vertexU));
if (v != parent) {
dfs(v, u);
}
}
timeOut[u] = ++clock;
}
private void computeAncestorMatrix()
{
ancestors = new int[maxLevel + 1][graph.vertexSet().size()];
for (int l = 0; l < maxLevel; l++) {
Arrays.fill(ancestors[l], -1);
}
timeIn = new int[graph.vertexSet().size()];
timeOut = new int[graph.vertexSet().size()];
// Ensure that isAncestor(x, y) == false if either x and y hasn't been explored yet
for (int i = 0; i < graph.vertexSet().size(); i++) {
timeIn[i] = timeOut[i] = -(i + 1);
}
numberComponent = 0;
component = new int[graph.vertexSet().size()];
normalizeGraph();
for (V root : roots) {
if (component[vertexMap.get(root)] == 0) {
numberComponent++;
dfs(vertexMap.get(root), -1);
} else {
throw new IllegalArgumentException("multiple roots in the same tree");
}
}
}
private boolean isAncestor(int ancestor, int descendant)
{
return timeIn[ancestor] <= timeIn[descendant] && timeOut[descendant] <= timeOut[ancestor];
}
/**
* {@inheritDoc}
*/
@Override
public V getLCA(V a, V b)
{
int indexA = vertexMap.getOrDefault(a, -1);
if (indexA == -1)
throw new IllegalArgumentException("invalid vertex: " + a);
int indexB = vertexMap.getOrDefault(b, -1);
if (indexB == -1)
throw new IllegalArgumentException("invalid vertex: " + b);
// Check if a == b because lca(a, a) == a
if (a.equals(b))
return a;
// if a and b are in different components then they do not have a lca
if (component[indexA] != component[indexB] || component[indexA] == 0)
return null;
if (isAncestor(indexA, indexB))
return a;
if (isAncestor(indexB, indexA))
return b;
for (int l = maxLevel - 1; l >= 0; l--)
if (ancestors[l][indexA] != -1 && !isAncestor(ancestors[l][indexA], indexB))
indexA = ancestors[l][indexA];
int lca = ancestors[0][indexA];
// if lca is null
if (lca == -1)
return null;
else
return indexList.get(lca);
}
/**
* Note: This operation is not supported.
*
* {@inheritDoc}
*
* @throws UnsupportedOperationException if the method is called
*/
@Override
public Set getLCASet(V a, V b)
{
throw new UnsupportedOperationException();
}
}