com.salesforce.jgrapht.alg.lca.EulerTourRMQLCAFinder Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2018-2018, by Alexandru Valeanu and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package com.salesforce.jgrapht.alg.lca;
import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.interfaces.*;
import com.salesforce.jgrapht.alg.util.*;
import com.salesforce.jgrapht.util.*;
import java.util.*;
/**
* Algorithm for computing lowest common ancestors in rooted trees and forests based on Berkman,
* Omer; Vishkin, Uzi (1993), "Recursive Star-Tree Parallel Data Structure", SIAM Journal on
* Computing, 22 (2): 221–242, doi:10.1137/0222017.
*
*
* The algorithm involves forming an Euler tour of a graph formed from the input tree by doubling
* every edge, and using this tour to compute a sequence of level numbers of the nodes in the order
* the tour visits them. A lowest common ancestor query can then be transformed into a query that
* seeks the minimum value occurring within some subinterval of this sequence of numbers.
*
*
*
* Preprocessing Time complexity: $O(|V| log(|V|))$
* Preprocessing Space complexity: $O(|V| log(|V|))$
* Query Time complexity: $O(1)$
* Query Space complexity: $O(1)$
*
*
*
* For small (i.e. less than 100 vertices) trees or forests, all implementations behave similarly.
* For larger trees/forests with less than 50,000 queries you can use either
* {@link BinaryLiftingLCAFinder}, {@link HeavyPathLCAFinder} or {@link EulerTourRMQLCAFinder}. Fo
* more than that use {@link EulerTourRMQLCAFinder} since it provides $O(1)$ per query.
* Space-wise, {@link HeavyPathLCAFinder} and {@link TarjanLCAFinder} only use a linear amount while
* {@link BinaryLiftingLCAFinder} and {@link EulerTourRMQLCAFinder} require linearithmic space.
* For DAGs, use {@link NaiveLCAFinder}.
*
*
* @param the graph vertex type
* @param the graph edge type
*
* @author Alexandru Valeanu
*/
public class EulerTourRMQLCAFinder
implements
LowestCommonAncestorAlgorithm
{
private final Graph graph;
private final Set roots;
private final int maxLevel;
private Map vertexMap;
private List indexList;
private int[] eulerTour;
private int sizeTour;
private int numberComponent;
private int[] component;
private int[] level;
private int[] representative;
private int[][] rmq;
private int[] log2;
/**
* Construct a new instance of the algorithm.
*
*
* Note: The constructor will NOT check if the input graph is a valid tree.
*
* @param graph the input graph
* @param root the root of the graph
*/
public EulerTourRMQLCAFinder(Graph graph, V root)
{
this(graph, Collections.singleton(Objects.requireNonNull(root, "root cannot be null")));
}
/**
* Construct a new instance of the algorithm.
*
*
* Note: If two roots appear in the same tree, an error will be thrown.
*
*
* Note: The constructor will NOT check if the input graph is a valid forest.
*
* @param graph the input graph
* @param roots the set of roots of the graph
*/
public EulerTourRMQLCAFinder(Graph graph, Set roots)
{
this.graph = Objects.requireNonNull(graph, "graph cannot be null");
this.roots = Objects.requireNonNull(roots, "roots cannot be null");
this.maxLevel = 1 + com.salesforce.jgrapht.util.MathUtil.log2(graph.vertexSet().size());
if (this.roots.isEmpty())
throw new IllegalArgumentException("roots cannot be empty");
if (!graph.vertexSet().containsAll(roots))
throw new IllegalArgumentException("at least one root is not a valid vertex");
computeAncestorsStructure();
}
private void normalizeGraph()
{
VertexToIntegerMapping vertexToIntegerMapping = Graphs.getVertexToIntegerMapping(graph);
vertexMap = vertexToIntegerMapping.getVertexMap();
indexList = vertexToIntegerMapping.getIndexList();
}
private void dfsIterative(int u, int startLevel)
{
// set of vertices for which the part of the if has been performed
// (in other words: u ∈ explored iff dfs(u, ...) has been called as some point)
Set explored = new HashSet<>();
ArrayDeque> stack = new ArrayDeque<>();
stack.push(Pair.of(u, startLevel));
while (!stack.isEmpty()) {
Pair pair = stack.poll();
u = pair.getFirst();
int lvl = pair.getSecond();
if (!explored.contains(u)) {
explored.add(u);
component[u] = numberComponent;
eulerTour[sizeTour] = u;
level[sizeTour] = lvl;
sizeTour++;
V vertexU = indexList.get(u);
for (E edge : graph.outgoingEdgesOf(vertexU)) {
int child = vertexMap.get(Graphs.getOppositeVertex(graph, edge, vertexU));
// check if child has not been explored (i.e. dfs(child, ...) has not been
// called)
if (!explored.contains(child)) {
// simulate the return from recursion
stack.push(pair);
stack.push(Pair.of(child, lvl + 1));
}
}
} else {
eulerTour[sizeTour] = u;
level[sizeTour] = lvl;
sizeTour++;
}
}
}
private void computeRMQ()
{
rmq = new int[maxLevel + 1][sizeTour];
log2 = new int[sizeTour + 1];
for (int i = 0; i < sizeTour; i++) {
rmq[0][i] = i;
}
for (int i = 1; (1 << i) <= sizeTour; i++) {
for (int j = 0; j + (1 << i) - 1 < sizeTour; j++) {
int p = 1 << (i - 1);
if (level[rmq[i - 1][j]] < level[rmq[i - 1][j + p]]) {
rmq[i][j] = rmq[i - 1][j];
} else {
rmq[i][j] = rmq[i - 1][j + p];
}
}
}
for (int i = 2; i <= sizeTour; ++i) {
log2[i] = log2[i / 2] + 1;
}
}
private void computeAncestorsStructure()
{
normalizeGraph();
eulerTour = new int[2 * graph.vertexSet().size()];
level = new int[2 * graph.vertexSet().size()];
representative = new int[graph.vertexSet().size()];
numberComponent = 0;
component = new int[graph.vertexSet().size()];
for (V root : roots) {
int u = vertexMap.get(root);
if (component[u] == 0) {
numberComponent++;
dfsIterative(u, -1);
} else {
throw new IllegalArgumentException("multiple roots in the same tree");
}
}
Arrays.fill(representative, -1);
for (int i = 0; i < sizeTour; i++) {
if (representative[eulerTour[i]] == -1) {
representative[eulerTour[i]] = i;
}
}
computeRMQ();
}
/**
* {@inheritDoc}
*/
@Override
public V getLCA(V a, V b)
{
int indexA = vertexMap.getOrDefault(a, -1);
if (indexA == -1)
throw new IllegalArgumentException("invalid vertex: " + a);
int indexB = vertexMap.getOrDefault(b, -1);
if (indexB == -1)
throw new IllegalArgumentException("invalid vertex: " + b);
// Check if a == b because lca(a, a) == a
if (a.equals(b))
return a;
// If a and b are in different components then they do not have a lca
if (component[indexA] != component[indexB] || component[indexA] == 0)
return null;
indexA = representative[indexA];
indexB = representative[indexB];
if (indexA > indexB) {
int t = indexA;
indexA = indexB;
indexB = t;
}
int l = log2[indexB - indexA + 1];
int pwl = 1 << l;
int sol = rmq[l][indexA];
if (level[sol] > level[rmq[l][indexB - pwl + 1]])
sol = rmq[l][indexB - pwl + 1];
return indexList.get(eulerTour[sol]);
}
/**
* Note: This operation is not supported.
*
* {@inheritDoc}
*
* @throws UnsupportedOperationException if the method is called
*/
@Override
public Set getLCASet(V a, V b)
{
throw new UnsupportedOperationException();
}
}