All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.matching.KuhnMunkresMinimalWeightBipartitePerfectMatching Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2013-2018, by Alexey Kudinkin and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.matching;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.interfaces.*;

import java.util.*;

/**
 * Kuhn-Munkres algorithm (named in honor of Harold Kuhn and James Munkres) solving assignment
 * problem also known as hungarian
 * algorithm (in the honor of hungarian mathematicians Dénes K?nig and Jen? Egerváry). It's
 * running time $O(V^3)$.
 *
 * 

* Assignment problem could be set as follows: * *

* Given complete bipartite graph * $G = (S, T; E)$, such that $|S| = |T|$, and each edge has non-negative cost c(i, * j), find perfect matching of minimal cost. *

* * @param the graph vertex type * @param the graph edge type * * @author Alexey Kudinkin */ public class KuhnMunkresMinimalWeightBipartitePerfectMatching implements MatchingAlgorithm { private final Graph graph; private Set partition1; private Set partition2; /** * Construct a new instance of the algorithm. * * @param graph the input graph * @param partition1 the first partition of the vertex set * @param partition2 the second partition of the vertex set */ public KuhnMunkresMinimalWeightBipartitePerfectMatching( Graph graph, Set partition1, Set partition2) { if (graph == null) { throw new IllegalArgumentException("Input graph cannot be null"); } this.graph = graph; if (partition1 == null) { throw new IllegalArgumentException("Partition 1 cannot be null"); } this.partition1 = partition1; if (partition2 == null) { throw new IllegalArgumentException("Partition 2 cannot be null"); } this.partition2 = partition2; } /** * {@inheritDoc} */ @Override public Matching getMatching() { // Validate graph being complete bipartite with equally-sized partitions if (partition1.size() != partition2.size()) { throw new IllegalArgumentException( "Graph supplied isn't complete bipartite with equally sized partitions!"); } if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) { throw new IllegalArgumentException("Invalid bipartite partition provided"); } int partition = partition1.size(); int edges = graph.edgeSet().size(); if (edges != (partition * partition)) { throw new IllegalArgumentException( "Graph supplied isn't complete bipartite with equally sized partitions!"); } if (!GraphTests.isSimple(graph)) { throw new IllegalArgumentException("Only simple graphs supported"); } List firstPartition = new ArrayList<>(partition1); List secondPartition = new ArrayList<>(partition2); // Expected behavior for an empty graph is to return an empty set, so // we check this last int[] matching; if (graph.vertexSet().isEmpty()) { matching = new int[] {}; } else { matching = new KuhnMunkresMatrixImplementation<>(graph, firstPartition, secondPartition) .buildMatching(); } Set edgeSet = new HashSet<>(); double weight = 0d; for (int i = 0; i < matching.length; ++i) { E e = graph.getEdge(firstPartition.get(i), secondPartition.get(matching[i])); weight += graph.getEdgeWeight(e); edgeSet.add(e); } return new MatchingImpl<>(graph, edgeSet, weight); } /** * The actual implementation. */ static class KuhnMunkresMatrixImplementation { /** * Cost matrix */ private double[][] costMatrix; /** * Excess matrix */ private double[][] excessMatrix; /** * Rows coverage bit-mask */ boolean[] rowsCovered; /** * Columns coverage bit-mask */ boolean[] columnsCovered; /** * ``columnMatched[i]'' is the column # of the ZERO matched at the $i$-th row */ private int[] columnMatched; /** * ``rowMatched[j]'' is the row # of the ZERO matched at the $j$-th column */ private int[] rowMatched; /** * Construct new instance * * @param G the input graph * @param S first partition of the vertex set * @param T second partition of the vertex set */ public KuhnMunkresMatrixImplementation( final Graph G, final List S, final List T) { int partition = S.size(); // Build an excess-matrix corresponding to the supplied weighted // complete bipartite graph costMatrix = new double[partition][]; for (int i = 0; i < S.size(); ++i) { V source = S.get(i); costMatrix[i] = new double[partition]; for (int j = 0; j < T.size(); ++j) { V target = T.get(j); if (source.equals(target)) { continue; } costMatrix[i][j] = G.getEdgeWeight(G.getEdge(source, target)); } } } /** * Gets costs-matrix as input and returns assignment of tasks (designated by the columns of * cost-matrix) to the workers (designated by the rows of the cost-matrix) so that to * MINIMIZE total tasks-tackling costs * * @return assignment of tasks */ protected int[] buildMatching() { int height = costMatrix.length, width = costMatrix[0].length; // Make an excess-matrix excessMatrix = makeExcessMatrix(); // Build row/column coverage rowsCovered = new boolean[height]; columnsCovered = new boolean[width]; // Cached values of zeroes' indices in particular columns/rows columnMatched = new int[height]; rowMatched = new int[width]; Arrays.fill(columnMatched, -1); Arrays.fill(rowMatched, -1); // Find perfect matching corresponding to the optimal assignment while (buildMaximalMatching() < width) { buildVertexCoverage(); extendEqualityGraph(); } // Almost done! return Arrays.copyOf(columnMatched, height); } ///////////////////////////////////////////////////////////////////////////////////////////////// /** * Composes excess-matrix corresponding to the given cost-matrix */ double[][] makeExcessMatrix() { double[][] excessMatrix = new double[costMatrix.length][]; for (int i = 0; i < excessMatrix.length; ++i) { excessMatrix[i] = Arrays.copyOf(costMatrix[i], costMatrix[i].length); } // Subtract minimal costs across the rows for (int i = 0; i < excessMatrix.length; ++i) { double cheapestTaskCost = Double.MAX_VALUE; for (int j = 0; j < excessMatrix[i].length; ++j) { if (cheapestTaskCost > excessMatrix[i][j]) { cheapestTaskCost = excessMatrix[i][j]; } } for (int j = 0; j < excessMatrix[i].length; ++j) { excessMatrix[i][j] -= cheapestTaskCost; } } // Subtract minimal costs across the columns // // NOTE: Makes nothing if there is any worker that can more // (cost-)effectively tackle this task than any other, i.e. there // is any row having zero in this column. However, if there is no // one, reduce the cost-demands of each worker to the size of the // min-cost (we can easily do this, since we have particular // interest of the relative values only), i.e. subtract the value // of the minimum cost-demands to highlight (with zero) the // worker that can tackle this task demanding lowest reward. for (int j = 0; j < excessMatrix[0].length; ++j) { double cheapestWorkerCost = Double.MAX_VALUE; for (int i = 0; i < excessMatrix.length; ++i) { if (cheapestWorkerCost > excessMatrix[i][j]) { cheapestWorkerCost = excessMatrix[i][j]; } } for (int i = 0; i < excessMatrix.length; ++i) { excessMatrix[i][j] -= cheapestWorkerCost; } } return excessMatrix; } /** * Builds maximal matching corresponding to the given excess-matrix * * @return size of a maximal matching built */ int buildMaximalMatching() { // Match all zeroes non-staying in the same column/row int matchingSizeLowerBound = 0; for (int i = 0; i < columnMatched.length; ++i) { if (columnMatched[i] != -1) { ++matchingSizeLowerBound; } } // Compose first-approximation by matching zeroes in a greed fashion for (int j = 0; j < excessMatrix[0].length; ++j) { if (rowMatched[j] == -1) { for (int i = 0; i < excessMatrix.length; ++i) { if ((excessMatrix[i][j] == 0) && (columnMatched[i] == -1)) { ++matchingSizeLowerBound; columnMatched[i] = j; rowMatched[j] = i; break; } } } } // Check whether perfect matching is found if (matchingSizeLowerBound == excessMatrix[0].length) { return matchingSizeLowerBound; } // // As to E. Burge: Matching is maximal iff bipartite graph doesn't // contain any matching-augmenting paths. // // Try to find any match-augmenting path boolean[] rowsVisited = new boolean[excessMatrix.length]; boolean[] colsVisited = new boolean[excessMatrix[0].length]; int matchingSize = 0; boolean extending = true; while (extending && (matchingSize < excessMatrix.length)) { Arrays.fill(rowsVisited, false); Arrays.fill(colsVisited, false); extending = false; for (int j = 0; j < excessMatrix.length; ++j) { if ((rowMatched[j] == -1) && !colsVisited[j]) { extending |= new MatchExtender(rowsVisited, colsVisited) .extend(j); /* Try to extend matching */ } } matchingSize = 0; for (int j = 0; j < rowMatched.length; ++j) { if (rowMatched[j] != -1) { ++matchingSize; } } } return matchingSize; } /** * Builds vertex-cover given built up matching */ void buildVertexCoverage() { Arrays.fill(columnsCovered, false); Arrays.fill(rowsCovered, false); boolean[] invertible = new boolean[rowsCovered.length]; for (int i = 0; i < excessMatrix.length; ++i) { if (columnMatched[i] != -1) { invertible[i] = true; continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { if (Double.compare(excessMatrix[i][j], 0.) == 0) { rowsCovered[i] = invertible[i] = true; break; } } } boolean cont = true; while (cont) { for (int i = 0; i < excessMatrix.length; ++i) { if (rowsCovered[i]) { for (int j = 0; j < excessMatrix[i].length; ++j) { if ((Double.compare(excessMatrix[i][j], 0.) == 0) && !columnsCovered[j]) { columnsCovered[j] = true; } } } } // Shall we continue? cont = false; for (int j = 0; j < columnsCovered.length; ++j) { if (columnsCovered[j] && (rowMatched[j] != -1)) { if (!rowsCovered[rowMatched[j]]) { cont = true; rowsCovered[rowMatched[j]] = true; } } } } // Invert covered rows selection for (int i = 0; i < rowsCovered.length; ++i) { if (invertible[i]) { rowsCovered[i] ^= true; } } assert uncovered(excessMatrix, rowsCovered, columnsCovered) == 0; assert minimal(rowMatched, rowsCovered, columnsCovered); } /** * Extends equality-graph subtracting minimal excess from all the COLUMNS UNCOVERED and * adding it to the all ROWS COVERED */ void extendEqualityGraph() { double minExcess = Double.MAX_VALUE; for (int i = 0; i < excessMatrix.length; ++i) { if (rowsCovered[i]) { continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { if (columnsCovered[j]) { continue; } if (minExcess > excessMatrix[i][j]) { minExcess = excessMatrix[i][j]; } } } // Add up to all elements of the COVERED ROWS for (int i = 0; i < excessMatrix.length; ++i) { if (!rowsCovered[i]) { continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { excessMatrix[i][j] += minExcess; } } // Subtract from all elements of the UNCOVERED COLUMNS for (int j = 0; j < excessMatrix[0].length; ++j) { if (columnsCovered[j]) { continue; } for (int i = 0; i < excessMatrix.length; ++i) { excessMatrix[i][j] -= minExcess; } } } /** * Assures given column-n-rows-coverage/zero-matching to be minimal/maximal * * @param match zero-matching to check * @param rowsCovered rows coverage to check * @param colsCovered columns coverage to check * * @return true if given matching and coverage are maximal and minimal respectively */ private static boolean minimal( final int[] match, final boolean[] rowsCovered, final boolean[] colsCovered) { int matched = 0; for (int i = 0; i < match.length; ++i) { if (match[i] != -1) { ++matched; } } int covered = 0; for (int i = 0; i < rowsCovered.length; ++i) { if (rowsCovered[i]) { ++covered; } if (colsCovered[i]) { ++covered; } } return matched == covered; } /** * Accounts for zeroes being uncovered * * @param excessMatrix target excess-matrix * @param rowsCovered rows coverage to check * @param colsCovered columns coverage to check */ private static int uncovered( final double[][] excessMatrix, final boolean[] rowsCovered, final boolean[] colsCovered) { int uncoveredZero = 0; for (int i = 0; i < excessMatrix.length; ++i) { if (rowsCovered[i]) { continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { if (colsCovered[j]) { continue; } if (Double.compare(excessMatrix[i][j], 0.) == 0) { ++uncoveredZero; } } } return uncoveredZero; } /** * Aggregates utilities to extend matching */ protected class MatchExtender { private final boolean[] rowsVisited; private final boolean[] colsVisited; private MatchExtender(final boolean[] rowsVisited, final boolean[] colsVisited) { this.rowsVisited = rowsVisited; this.colsVisited = colsVisited; } /** * Performs DFS to seek after matching-augmenting path starting at the initial-vertex * * @param initialCol column # of initial-vertex * @return true when some augmenting-path found, false otherwise */ public boolean extend(int initialCol) { return extendMatchingEL(initialCol); } /** * DFS helper #1 (applicable for ODD-LENGTH paths ONLY) * * @param pathTailRow row # of tail of the matching-augmenting path * @param pathTailCol column # of tail of the matching-augmenting path * * @return true if matching-augmenting path found, false otherwise */ private boolean extendMatchingOL(int pathTailRow, int pathTailCol) { // Seek after already matched zero // Check whether row occupied by the 'tail' vertex isn't matched if (columnMatched[pathTailRow] == -1) { // There is no way to continue: mark zero as matched, // trigger along-side flipping columnMatched[pathTailRow] = pathTailCol; rowMatched[pathTailCol] = pathTailRow; return true; } else { // Add next matched zero: mark current vertex as "visited" rowsVisited[pathTailRow] = true; // Check whether we can proceed if (colsVisited[columnMatched[pathTailRow]]) { return false; } boolean extending = extendMatchingEL(columnMatched[pathTailRow]); if (extending) { columnMatched[pathTailRow] = pathTailCol; rowMatched[pathTailCol] = pathTailRow; } return extending; } } /** * DFS helper #1 (applicable for ODD-LENGTH paths ONLY) * * @param pathTailCol column # of tail of the matching-augmenting path * * @return true if matching-augmenting path found, false otherwise */ private boolean extendMatchingEL(int pathTailCol) { colsVisited[pathTailCol] = true; for (int i = 0; i < excessMatrix.length; ++i) { if ((excessMatrix[i][pathTailCol] == 0) && !rowsVisited[i]) { boolean extending = extendMatchingOL( i, // New tail to continue pathTailCol // ); if (extending) { return true; } } } return false; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy