All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.matching.MaximumWeightBipartiteMatching Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2017-2018, by Dimitrios Michail and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.matching;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.interfaces.*;
import org.jheaps.*;
import org.jheaps.tree.*;

import java.math.*;
import java.util.*;
import java.util.function.*;

/**
 * Maximum weight matching in bipartite graphs.
 * 
 * 

* Running time is $O(n(m+n \log n))$ where n is the number of vertices and m the number of edges of * the input graph. Uses exact arithmetic and produces a certificate of optimality in the form of a * tight vertex potential function. * *

* This is the algorithm and implementation described in the * LEDA book. See the LEDA * Platform of Combinatorial and Geometric Computing, Cambridge University Press, 1999. * * @param the graph vertex type * @param the graph edge type * * @author Dimitrios Michail */ public class MaximumWeightBipartiteMatching implements MatchingAlgorithm { private final Graph graph; private final Set partition1; private final Set partition2; private final Comparator comparator; private final Function, AddressableHeap> heapSupplier; // vertex potentials private Map pot; // the matched edge of a vertex, also used to check if a vertex is free private Map matchedEdge; // shortest path related data structures private AddressableHeap heap; private Map> nodeInHeap; private Map pred; private Map dist; // the actual result private Set matching; private BigDecimal matchingWeight; /** * Constructor. * * @param graph the input graph * @param partition1 the first partition of the vertex set * @param partition2 the second partition of the vertex set * @throws IllegalArgumentException if the graph is not undirected */ public MaximumWeightBipartiteMatching(Graph graph, Set partition1, Set partition2) { this(graph, partition1, partition2, (comparator) -> new FibonacciHeap<>(comparator)); } /** * Constructor. * * @param graph the input graph * @param partition1 the first partition of the vertex set * @param partition2 the second partition of the vertex set * @param heapSupplier a supplier for the addressable heap to use in the algorithm. * @throws IllegalArgumentException if the graph is not undirected */ public MaximumWeightBipartiteMatching( Graph graph, Set partition1, Set partition2, Function, AddressableHeap> heapSupplier) { this.graph = GraphTests.requireUndirected(graph); this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null"); this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null"); this.comparator = Comparator. naturalOrder(); this.heapSupplier = Objects.requireNonNull(heapSupplier, "Heap supplier cannot be null"); } /** * {@inheritDoc} */ @Override public Matching getMatching() { /* * Test input instance */ if (!GraphTests.isSimple(graph)) { throw new IllegalArgumentException("Only simple graphs supported"); } if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) { throw new IllegalArgumentException("Graph partition is not bipartite"); } // initialize result matching = new LinkedHashSet<>(); matchingWeight = BigDecimal.ZERO; // empty graph if (graph.edgeSet().isEmpty()) { return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue()); } // initialize pot = new HashMap<>(); dist = new HashMap<>(); matchedEdge = new HashMap<>(); heap = heapSupplier.apply(comparator); nodeInHeap = new HashMap<>(); pred = new HashMap<>(); graph.vertexSet().forEach(v -> { pot.put(v, BigDecimal.ZERO); pred.put(v, null); dist.put(v, BigDecimal.ZERO); }); // run simple heuristic simpleHeuristic(); // augment to optimality for (V v : partition1) { if (!matchedEdge.containsKey(v)) { augment(v); } } return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue()); } /** * Get the vertex potentials. * *

* This is a tight non-negative potential function which proves the optimality of the maximum * weight matching. See any standard textbook about linear programming duality. * * @return the vertex potentials */ public Map getPotentials() { if (pot == null) { return Collections.emptyMap(); } else { return Collections.unmodifiableMap(pot); } } /** * Get the weight of the matching. * * @return the weight of the matching */ public BigDecimal getMatchingWeight() { return matchingWeight; } /** * Augment from a particular node. The algorithm always looks for augmenting paths from nodes in * partition1. In the following code partition1 is $A$ and partition2 is $B$. * * @param a the node */ private void augment(V a) { dist.put(a, BigDecimal.ZERO); V bestInA = a; BigDecimal minA = pot.get(a); BigDecimal delta; Deque reachedA = new ArrayDeque<>(); reachedA.push(a); Deque reachedB = new ArrayDeque<>(); // relax all edges out of a1 V a1 = a; for (E e1 : graph.edgesOf(a1)) { if (!matching.contains(e1)) { V b1 = Graphs.getOppositeVertex(graph, e1, a1); BigDecimal db1 = dist.get(a1).add(pot.get(a1)).add(pot.get(b1)).subtract( BigDecimal.valueOf(graph.getEdgeWeight(e1))); if (pred.get(b1) == null) { dist.put(b1, db1); pred.put(b1, e1); reachedB.push(b1); AddressableHeap.Handle node = heap.insert(db1, b1); nodeInHeap.put(b1, node); } else { if (comparator.compare(db1, dist.get(b1)) < 0) { dist.put(b1, db1); pred.put(b1, e1); nodeInHeap.get(b1).decreaseKey(db1); } } } } while (true) { /* * select from priority queue the node b with minimal distance db */ V b = null; BigDecimal db = BigDecimal.ZERO; if (!heap.isEmpty()) { b = heap.deleteMin().getValue(); nodeInHeap.remove(b); db = dist.get(b); } /* * three cases */ if (b == null || comparator.compare(db, minA) >= 0) { delta = minA; augmentPathTo(bestInA); break; } else { E e = matchedEdge.get(b); if (e == null) { delta = db; augmentPathTo(b); break; } else { a1 = Graphs.getOppositeVertex(graph, e, b); pred.put(a1, e); reachedA.push(a1); dist.put(a1, db); if (comparator.compare(db.add(pot.get(a1)), minA) < 0) { bestInA = a1; minA = db.add(pot.get(a1)); } // relax all edges out of a1 for (E e1 : graph.edgesOf(a1)) { if (!matching.contains(e1)) { V b1 = Graphs.getOppositeVertex(graph, e1, a1); BigDecimal db1 = dist.get(a1).add(pot.get(a1)).add(pot.get(b1)).subtract( BigDecimal.valueOf(graph.getEdgeWeight(e1))); if (pred.get(b1) == null) { dist.put(b1, db1); pred.put(b1, e1); reachedB.push(b1); AddressableHeap.Handle node = heap.insert(db1, b1); nodeInHeap.put(b1, node); } else { if (comparator.compare(db1, dist.get(b1)) < 0) { dist.put(b1, db1); pred.put(b1, e1); nodeInHeap.get(b1).decreaseKey(db1); } } } } } } } // augment: potential update and re-initialization while (!reachedA.isEmpty()) { V v = reachedA.pop(); pred.put(v, null); BigDecimal potChange = delta.subtract(dist.get(v)); if (comparator.compare(potChange, BigDecimal.ZERO) <= 0) { continue; } pot.put(v, pot.get(v).subtract(potChange)); } while (!reachedB.isEmpty()) { V v = reachedB.pop(); pred.put(v, null); if (nodeInHeap.containsKey(v)) { nodeInHeap.remove(v).delete(); } BigDecimal potChange = delta.subtract(dist.get(v)); if (comparator.compare(potChange, BigDecimal.ZERO) <= 0) { continue; } pot.put(v, pot.get(v).add(potChange)); } } private void augmentPathTo(V v) { List matched = new ArrayList<>(); List free = new ArrayList<>(); E e1 = pred.get(v); while (e1 != null) { if (matching.contains(e1)) { matched.add(e1); } else { free.add(e1); } v = Graphs.getOppositeVertex(graph, e1, v); e1 = pred.get(v); } for (E e : matched) { BigDecimal w = BigDecimal.valueOf(graph.getEdgeWeight(e)); V s = graph.getEdgeSource(e); V t = graph.getEdgeTarget(e); matchedEdge.remove(s); matchedEdge.remove(t); matchingWeight.subtract(w); matching.remove(e); } for (E e : free) { BigDecimal w = BigDecimal.valueOf(graph.getEdgeWeight(e)); V s = graph.getEdgeSource(e); V t = graph.getEdgeTarget(e); matchedEdge.put(s, e); matchedEdge.put(t, e); matchingWeight.add(w); matching.add(e); } } private void simpleHeuristic() { for (V v : partition1) { E maxEdge = null; BigDecimal maxWeight = BigDecimal.ZERO; for (E e : graph.edgesOf(v)) { BigDecimal w = BigDecimal.valueOf(graph.getEdgeWeight(e)); if (comparator.compare(w, maxWeight) > 0) { maxWeight = w; maxEdge = e; } } pot.put(v, maxWeight); if (maxEdge != null) { V u = Graphs.getOppositeVertex(graph, maxEdge, v); if (!matchedEdge.containsKey(u)) { matching.add(maxEdge); matchingWeight = matchingWeight.add(maxWeight); matchedEdge.put(v, maxEdge); matchedEdge.put(u, maxEdge); } } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy