com.salesforce.jgrapht.alg.tour.TwoApproxMetricTSP Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2017-2018, by Dimitrios Michail and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package com.salesforce.jgrapht.alg.tour;
import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.interfaces.*;
import com.salesforce.jgrapht.alg.spanning.*;
import com.salesforce.jgrapht.graph.*;
import com.salesforce.jgrapht.traverse.*;
import java.util.*;
/**
* A 2-approximation algorithm for the metric TSP problem.
*
*
* The travelling salesman problem (TSP) asks the following question: "Given a list of cities and
* the distances between each pair of cities, what is the shortest possible route that visits each
* city exactly once and returns to the origin city?". In the metric TSP, the intercity distances
* satisfy the triangle inequality.
*
*
* This is an implementation of the folklore algorithm which returns a depth-first ordering of the
* minimum spanning tree. The algorithm is a 2-approximation assuming that the instance satisfies
* the triangle inequality. The implementation requires the input graph to be undirected and
* complete. The running time is $O(|V|^2 \log |V|)$.
*
*
* See wikipedia for more
* details.
*
* @param the graph vertex type
* @param the graph edge type
*
* @author Dimitrios Michail
*/
public class TwoApproxMetricTSP
implements
HamiltonianCycleAlgorithm
{
/**
* Construct a new instance
*/
public TwoApproxMetricTSP()
{
}
/**
* Computes a 2-approximate tour.
*
* @param graph the input graph
* @return a tour
* @throws IllegalArgumentException if the graph is not undirected
* @throws IllegalArgumentException if the graph is not complete
* @throws IllegalArgumentException if the graph contains no vertices
*/
@Override
public GraphPath getTour(Graph graph)
{
if (!graph.getType().isUndirected()) {
throw new IllegalArgumentException("Graph must be undirected");
}
if (!GraphTests.isComplete(graph)) {
throw new IllegalArgumentException("Graph is not complete");
}
if (graph.vertexSet().isEmpty()) {
throw new IllegalArgumentException("Graph contains no vertices");
}
/*
* Special case singleton vertex
*/
if (graph.vertexSet().size() == 1) {
V start = graph.vertexSet().iterator().next();
return new GraphWalk<>(
graph, start, start, Collections.singletonList(start), Collections.emptyList(), 0d);
}
/*
* Create MST
*/
Graph mst = new SimpleGraph<>(DefaultEdge.class);
for (V v : graph.vertexSet()) {
mst.addVertex(v);
}
for (E e : new KruskalMinimumSpanningTree<>(graph).getSpanningTree().getEdges()) {
mst.addEdge(graph.getEdgeSource(e), graph.getEdgeTarget(e));
}
/*
* Perform a depth-first-search traversal
*/
int n = graph.vertexSet().size();
Set found = new HashSet<>(n);
List tour = new ArrayList<>(n + 1);
V start = graph.vertexSet().iterator().next();
DepthFirstIterator dfsIt = new DepthFirstIterator<>(mst, start);
while (dfsIt.hasNext()) {
V v = dfsIt.next();
if (found.add(v)) {
tour.add(v);
}
}
// repeat the start vertex
tour.add(start);
/*
* Explicitly build the path.
*/
List tourEdges = new ArrayList<>(n);
double tourWeight = 0d;
Iterator tourIt = tour.iterator();
V u = tourIt.next();
while (tourIt.hasNext()) {
V v = tourIt.next();
E e = graph.getEdge(u, v);
tourEdges.add(e);
tourWeight += graph.getEdgeWeight(e);
u = v;
}
return new GraphWalk<>(graph, start, start, tour, tourEdges, tourWeight);
}
}